787 research outputs found

    New Plasma Separation Glucose Oxidase-based Glucometer in Monitoring of Blood With Different PO2 Levels

    Get PDF
    BackgroundThe PalmLab glucometer is a newly designed plasma separation glucose oxidase (GO)-based glucometer. Past studies have shown that the accuracy of GO-based glucometers is compromised when measurements are taken in patients with high PO2 levels. We performed a two-arm study comparing the fitness of the PalmLab blood glucometer with that of a standard glucose analyzer in monitoring blood glucose levels in pediatric patients, especially when arterial partial pressure of oxygen (PO2) was high.MethodsIn the first arm of the study, arterial blood samples from pediatric patients were measured by the PalmLab blood glucometer and the YSI 2302 Plus Glucose/Lactate analyzer. In the second arm of the study, venous blood samples from adult volunteers were spiked with glucose water to prepare three different levels of glucose (65, 150, and 300mg/dL) and then oxygenated to six levels of PO2 (range, 40–400mmHg). The biases of the PalmLab glucometer were calculated.ResultsA total of 162 samples were collected in the first arm of the study. Results of linear regression showed that the coefficient of determination (R2) between PalmLab glucometer and standard glucose analyzer was 0.9864. Error grid analysis revealed that all the results were within Zone A (clinically accurate estimate zone). The biases between the two systems were low at different PO2 levels. In the second arm of the study, the results were also unaffected by changes in PO2.ConclusionThe PalmLab glucometer provides accurate results in samples with high PO2 and is suitable for measuring arterial glucose levels in pediatric patients

    ECG Signal Super-resolution by Considering Reconstruction and Cardiac Arrhythmias Classification Loss

    Full text link
    With recent advances in deep learning algorithms, computer-assisted healthcare services have rapidly grown, especially for those that combine with mobile devices. Such a combination enables wearable and portable services for continuous measurements and facilitates real-time disease alarm based on physiological signals, e.g., cardiac arrhythmias (CAs) from electrocardiography (ECG). However, long-term and continuous monitoring confronts challenges arising from limitations of batteries, and the transmission bandwidth of devices. Therefore, identifying an effective way to improve ECG data transmission and storage efficiency has become an emerging topic. In this study, we proposed a deep-learning-based ECG signal super-resolution framework (termed ESRNet) to recover compressed ECG signals by considering the joint effect of signal reconstruction and CA classification accuracies. In our experiments, we downsampled the ECG signals from the CPSC 2018 dataset and subsequently evaluated the super-resolution performance by both reconstruction errors and classification accuracies. Experimental results showed that the proposed ESRNet framework can well reconstruct ECG signals from the 10-times compressed ones. Moreover, approximately half of the CA recognition accuracies were maintained within the ECG signals recovered by the ESRNet. The promising results confirm that the proposed ESRNet framework can be suitably used as a front-end process to reconstruct compressed ECG signals in real-world CA recognition scenarios

    Pterostilbene, a Methoxylated Resveratrol Derivative, Efficiently Eradicates Planktonic, Biofilm, and Intracellular MRSA by Topical Application

    Get PDF
    Pterostilbene is a methoxylated derivative of resveratrol originated from natural sources. We investigated the antibacterial activity of pterostilbene against drug-resistant Staphylococcus aureus and the feasibility of using it to treat cutaneous bacteria. The antimicrobial effect was evaluated using an in vitro culture model and an in vivo mouse model of cutaneous infection. The minimum inhibitory concentration (MIC) assay demonstrated a superior biocidal activity of pterostilbene compared to resveratrol (8~16-fold) against methicillin-resistant S. aureus (MRSA) and clinically isolated vancomycin-intermediate S. aureus (VISA). Pterostilbene was found to reduce MRSA biofilm thickness from 18 to 10 μm as detected by confocal microscopy. Pterostilbene showed minimal toxicity to THP-1 cells and was readily engulfed by the macrophages, facilitating the eradication of intracellular MRSA. Pterostilbene exhibited increased skin absorption over resveratrol by 6-fold. Topical pterostilbene application improved the abscess formation produced by MRSA by reducing the bacterial burden and ameliorating the skin architecture. The potent anti-MRSA capability of pterostilbene was related to bacterial membrane leakage, chaperone protein downregulation, and ribosomal protein upregulation. This mechanism of action was different from that of resveratrol according to proteomic analysis and molecular docking. Pterostilbene has the potential to serve as a novel class of topically applied agents for treating MRSA infection in the skin while demonstrating less toxicity to mammalian cells

    Bmi-1 Regulates Snail Expression and Promotes Metastasis Ability in Head and Neck Squamous Cancer-Derived ALDH1 Positive Cells

    Get PDF
    Recent studies suggest that ALDH1 is a putative marker for HNSCC-derived cancer stem cells. However, the regulation mechanisms that maintain the stemness and metastatic capability of HNSCC-ALDH1+ cells remain unclear. Initially, HNSCC-ALDH1+ cells from HNSCC patient showed cancer stemness properties, and high expression of Bmi1 and Snail. Functionally, tumorigenic properties of HNSCC-ALDH1+ cells could be downregulated by knockdown of Bmi-1. Overexpression of Bmi-1 altered in expression property ALDH1− cells to that of ALDH1+ cells. Furthermore, knockdown of Bmi-1 enhanced the radiosensitivity of radiation-treated HNSCC-ALDH1+ cells. Moreover, overexpression of Bmi-1 in HNSCC-ALDH1− cells increased tumor volume and number of pulmonary metastatic lesions by xenotransplant assay. Importantly, knock-down of Bmi1 in HNSCC-ALDH1+ cells significantly decreased distant metastases in the lungs. Clinically, coexpression of Bmi-1/Snail/ALDH1 predicted the worst prognosis in HNSCC patients. Collectively, our data suggested that Bmi-1 plays a key role in regulating Snail expression and cancer stemness properties of HNSCC-ALDH1+ cells

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    The Atacama Large Millimeter/submillimeter Array (ALMA) Band-1 Receiver

    Full text link
    The Atacama Large Millimeter/submillimeter Array(ALMA) Band 1 receiver covers the 35-50 GHz frequency band. Development of prototype receivers, including the key components and subsystems has been completed and two sets of prototype receivers were fully tested. We will provide an overview of the ALMA Band 1 science goals, and its requirements and design for use on the ALMA. The receiver development status will also be discussed and the infrastructure, integration, evaluation of fully-assembled band 1 receiver system will be covered. Finally, a discussion of the technical and management challenges encountered will be presented

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore