556 research outputs found
Theoretical study of the two-proton halo candidate Ne including contributions from resonant continuum and pairing correlations
With the relativistic Coulomb wave function boundary condition, the energies,
widths and wave functions of the single proton resonant orbitals for Ne
are studied by the analytical continuation of the coupling constant (ACCC)
approach within the framework of the relativistic mean field (RMF) theory.
Pairing correlations and contributions from the single-particle resonant
orbitals in the continuum are taken into consideration by the resonant
Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is
used. It can be seen that the fully self-consistent calculations with NL3 and
NLSH effective interactions mostly agree with the latest experimental
measurements, such as binding energies, matter radii, charge radii and
densities. The energy of 2s orbital is slightly higher than that
of orbital, and the occupation probability of the
2s orbital is about 20%, which are in accordance with the
shell model calculation and three-body model estimation
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux:Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki
We present simultaneous observations of aurorae at Jupiter from the Hubble Space Telescope and Hisaki, in combination with the in situ measurements of magnetic field, particles, and radio waves from the Juno Spacecraft in the outer magnetosphere, from ~ 80RJ to 60RJ during 17 to 22 March 2017. Two cycles of accumulation and release of magnetic flux, named magnetic loading/unloading, were identified during this period, which correlate well with electron energization and auroral intensifications. Magnetic reconnection events are identified during both the loading and unloading periods, indicating that reconnection and unloading are independent processes. These results show that the dynamics in the middle magnetosphere are coupled with auroral variability
Are protons still dominant at the knee of the cosmic-ray energy spectrum?
A hybrid experiment consisting of emulsion chambers, burst detectors and the
Tibet II air-shower array was carried out at Yangbajing (4,300 m a.s.l., 606
g/cm) in Tibet to obtain the energy spectra of primary protons and heliums.
From three-year operation, these energy spectra are deduced between
and eV by triggering the air showers associated with a high energy
core and using a neural network method in the primary mass separation. The
proton spectrum can be expressed by a single power-law function with a
differential index of and based on the
QGSJET+HD and SIBYLL+HD models, respectively, which are steeper than that
extrapolated from the direct observations of in the energy
range below eV. The absolute fluxes of protons and heliums are
derived within 30% systematic errors depending on the hadronic interaction
models used in Monte Carlo simulation. The result of our experiment suggests
that the main component responsible for the change of the power index of the
all-particle spectrum around eV, so-called ``knee'', is
composed of nuclei heavier than helium. This is the first measurement of the
differential energy spectra of primary protons and heliums by selecting them
event by event at the knee energy region.Comment: This paper has been accepted for publication Physics Letters B on
October 19th, 2005. This paper has been accepted for publication Physics
Letters B on October 19th, 200
Comparing proton momentum distributions in and 3 nuclei via H H and He measurements
We report the first measurement of the reaction cross-section
ratios for Helium-3 (He), Tritium (H), and Deuterium (). The
measurement covered a missing momentum range of
MeV, at large momentum transfer (
(GeV)) and , which minimized contributions from non
quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave
impulse approximation (PWIA) calculations using realistic spectral functions
and momentum distributions. The measured and PWIA-calculated cross-section
ratios for He and H extend to just above the typical nucleon
Fermi-momentum ( MeV) and differ from each other by , while for He/H they agree within the measurement accuracy of
about 3\%. At momenta above , the measured He/H ratios differ from
the calculation by . Final state interaction (FSI) calculations
using the generalized Eikonal Approximation indicate that FSI should change the
He/H cross-section ratio for this measurement by less than 5\%. If
these calculations are correct, then the differences at large missing momenta
between the He/H experimental and calculated ratios could be due to the
underlying interaction, and thus could provide new constraints on the
previously loosely-constrained short-distance parts of the interaction.Comment: 8 pages, 3 figures (4 panels
Effect of event selection on jetlike correlation measurement in d+Au collisions at sNN=200 GeV
AbstractDihadron correlations are analyzed in sNN=200 GeV d+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions
- …