Abstract

With the relativistic Coulomb wave function boundary condition, the energies, widths and wave functions of the single proton resonant orbitals for 17^{17}Ne are studied by the analytical continuation of the coupling constant (ACCC) approach within the framework of the relativistic mean field (RMF) theory. Pairing correlations and contributions from the single-particle resonant orbitals in the continuum are taken into consideration by the resonant Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is used. It can be seen that the fully self-consistent calculations with NL3 and NLSH effective interactions mostly agree with the latest experimental measurements, such as binding energies, matter radii, charge radii and densities. The energy of π\pi2s1/2_{1/2} orbital is slightly higher than that of π1d5/2\pi1d_{5/2} orbital, and the occupation probability of the (π(\pi2s1/2)2_{1/2})^2 orbital is about 20%, which are in accordance with the shell model calculation and three-body model estimation

    Similar works