357 research outputs found

    From time-series to complex networks: Application to the cerebrovascular flow patterns in atrial fibrillation

    Get PDF
    A network-based approach is presented to investigate the cerebrovascular flow patterns during atrial fibrillation (AF) with respect to normal sinus rhythm (NSR). AF, the most common cardiac arrhythmia with faster and irregular beating, has been recently and independently associated with the increased risk of dementia. However, the underlying hemodynamic mechanisms relating the two pathologies remain mainly undetermined so far; thus the contribution of modeling and refined statistical tools is valuable. Pressure and flow rate temporal series in NSR and AF are here evaluated along representative cerebral sites (from carotid arteries to capillary brain circulation), exploiting reliable artificially built signals recently obtained from an in silico approach. The complex network analysis evidences, in a synthetic and original way, a dramatic signal variation towards the distal/capillary cerebral regions during AF, which has no counterpart in NSR conditions. At the large artery level, networks obtained from both AF and NSR hemodynamic signals exhibit elongated and chained features, which are typical of pseudo-periodic series. These aspects are almost completely lost towards the microcirculation during AF, where the networks are topologically more circular and present random-like characteristics. As a consequence, all the physiological phenomena at microcerebral level ruled by periodicity - such as regular perfusion, mean pressure per beat, and average nutrient supply at cellular level - can be strongly compromised, since the AF hemodynamic signals assume irregular behaviour and random-like features. Through a powerful approach which is complementary to the classical statistical tools, the present findings further strengthen the potential link between AF hemodynamic and cognitive decline.Comment: 12 pages, 10 figure

    Fluorescence Spectroscopy Applied in the Identification of Lubricant Oils

    Get PDF
    In this work, we report the use of fluorescence spectroscopy to identify lubricant oils. Optical characterization was performed in four commercial lubricant oils that are used in reciprocating compressors. Mid-infrared absorption of samples indicates the presence of aromatic rings showing bands at 1605 cm-1 (C=C stretching) and 815 cm-1 (C–H stretch out of plane). UV-VIS absorption spectra show bands of di- and polyaromatic rings (around 230 nm and 260 nm, respectively). By exciting the samples at 360 nm, a broad emission band centered at 440 nm is observed, indicating that this excitation is appropriate to be used for the diagnosis of oil presence in the environment. DOI: http://dx.doi.org/10.17807/orbital.v10i1.103

    Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach

    Get PDF
    Developing self-organised swarm systems capable of adapting to environmental changes as well as to dynamic situations is a complex challenge. An efficient labour division model, with the ability to regulate the distribution of work among swarm robots, is an important element of this kind of system. This paper extends the popular response threshold model and proposes a new adaptive response threshold model (ARTM). Experiments were carried out in simulation and in real-robot scenarios with the aim of studying the performance of this new adaptive model. Results presented in this paper verify that the extended approach improves on the adaptability of previous systems. For example, by reducing collision duration among robots in foraging missions, our approach helps small swarms of robots to adapt more efficiently to changing environments, thus increasing their self-sustainability (survival rate). Finally, we propose a minimal version of ARTM, which is derived from the conclusions drawn through real-robot and simulation results

    Low-temperature magnetic properties of pelagic carbonates: Oxidation of biogenic magnetite and identification of magnetosome chains

    Get PDF
    Pelagic marine carbonates provide important records of past environmental change. We carried out detailed low-temperature magnetic measurements on biogenic magnetite-bearing sediments from the Southern Ocean (Ocean Drilling Program (ODP) Holes 738B, 738C

    Polimorfismo no gene de metilenetetrahidrofolato redutase não está relacionado com o risco de doença cerebrovascular isquêmica em uma população brasileira

    Get PDF
    OBJETIVO: Os dados são conflitantes em relação a risco de acidente cerebrovascular associado a polimorfismo do gene 5,10-metilenetetrahidrofolato redutase C677T, o qual predispõe a hiperhomocisteinemia. Um estudo de meta-análise sugere que o genotipo 5,10-metilenetetrahidrofolato redutase 677TT poderia ter uma pequena influência em determinar susceptibilidade a acidente cerebrovascular. MÉTODOS: Analisamos este polimorfismo em indivíduos brasileiros com acidente cerebrovascular isquêmico, baseando-se em um estudo de caso-controle. RESULTADOS: Comparamos os genótipos 5,10-metilenetetrahidrofolato redutase em grupos de indivíduos com acidente cerebrovascular isquêmico (n=127) e controle normal (n=126), e encontramos Odds Ratio de 1,97 (IC 95% 0,84 - 4,64) em uma análise multivariada, na qual os resultados foram ajustados a características clínicas basais dos indivíduos estudados. DISCUSSÃO: Nossos estudos indicam que o genótipo 5,10-metilenetetrahidrofolato redutase C677T não é um fator de risco para acidente cerebrovascular isquêmico entre indivíduos brasileiros.PURPOSE: Data are conflicting concerning the risk for ischemic stroke associated with a common polymorphism in the gene encoding 5,10-methylenetetrahydrofolate reductase C677T, which predisposes carriers to hyperhomocysteinemia. A meta-analysis study suggested that the 5,10-methylenetetrahydrofolate reductase 677TT genotype might have a small influence in determining susceptibility to ischemic stroke. METHODS: We analyzed the 5,10-methylenetetrahydrofolate reductase 677TT genotype polymorphism in Brazilian subjects with ischemic stroke, using a case-control design. RESULTS: We compared 5,10-methylenetetrahydrofolate reductase genotypes in groups of subjects presenting ischemic stroke (n = 127) and normal control (n = 126) and found an odds ratio of 1.97 (95% CI, 0.84-4.64) in a multivariate analysis in which results were adjusted to baseline clinical characteristics of study participants. CONCLUSION: We found that the homozygous 5,10-methylenetetrahydrofolate reductase C677T genotype was not a risk factor for ischemic stroke in these Brazilian subjects

    Role of Ribosome Recycling Factor in Natural Termination and Translational Coupling as A Ribosome Releasing Factor

    Get PDF
    The role of ribosome recycling factor (RRF) of E. coli was studied in vivo and in vitro. We used the translational coupling without the Shine-Dalgarno sequence of downstream ORF (d-ORF) as a model system of the RRF action in natural termination of protein synthesis. For the in vivo studies we used the translational coupling by the adjacent coat and lysis genes of RNA phage GA sharing the termination and initiation (UAAUG) and temperature sensitive RRF. The d-ORF translation was measured by the expression of the reporter lacZ gene connected to the 5\u27-terminal part of the lysis gene. The results showed that more ribosomes which finished upstream ORF (u-ORF) reading were used for downstream reading when RRF was inactivated. The in vitro translational coupling studies with 027mRNA having the junction sequence UAAUG with wild-type RRF were carried out with measuring amino acids incorporation. The results showed that ribosomes released by RRF read downstream from AUG of UAAUG. In the absence of RRF, ribosomes read downstream in frame with UAA. These in vivo and in vitro studies indicate that RRF releases ribosomes from mRNA at the termination codon of u-ORF. Furthermore, the non-dissociable ribosomes read downstream from AUG of UAAUG with RRF in vitro. This suggests that complete ribosomal splitting is not required for ribosome release by RRF in translational coupling. The data are consistent with the interpretation that RRF functions mostly as a ribosome releasing factor rather than ribosome splitting factor. Additionally, the in vivo studies showed that short (less than 5 codons) u-ORF inhibited d-ORF reading by ribosomes finishing u-ORF reading, suggesting that the termination process in short ORF is not similar to that in normal ORF. This means that all the preexisting studies on RRF with short mRNA may not represent what goes on in natural termination step

    Fluorescence Spectroscopy Applied in the Identification of Lubricant Oils

    Get PDF
    In this work, we report the use of fluorescence spectroscopy to identify lubricant oils. Optical characterization was performed in four commercial lubricant oils that are used in reciprocating compressors. Mid-infrared absorption of samples indicates the presence of aromatic rings showing bands at 1605 cm-1 (C=C stretching) and 815 cm-1 (C–H stretch out of plane). UV-VIS absorption spectra show bands of di- and polyaromatic rings (around 230 nm and 260 nm, respectively). By exciting the samples at 360 nm, a broad emission band centered at 440 nm is observed, indicating that this excitation is appropriate to be used for the diagnosis of oil presence in the environment. DOI: http://dx.doi.org/10.17807/orbital.v10i1.103

    Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?

    Get PDF
    Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure
    corecore