42 research outputs found

    Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images

    Get PDF
    Voyager 1 and 2 narrow-angle frames were used to obtain displacements of features at resolutions of 130 km over time intervals of 1 Jovian rotation. The zonal velocity ū was constant to 1.5% during the 4 months between the Voyager 1 and 2 encounters. The latitudes of the zonal jet maxima (extrema of ū) are the same as inferred from earth-based observations extending over the past 80 years. The curvature of the velocity profile d²ū/dy² varies with latitudinal coordinate y in the range from −3β to +2β, where β is the planetary vorticity gradient. The barotropic stability criterion is violated at about 10 latitudes between ±60°. The eddy momentum flux variation with latitude (u'ν')(overbar) is positively correlated with dū/dy for both Voyager 1 and 2 data. The rate of conversion {K'K(overbar)} of eddy kinetic energy into zonal mean kinetic energy is in the range 1.5–3.0 Wm^(−2), for a layer 2.5 bar deep. The time constant for resupply of zonal mean kinetic energy by eddies is in the range 2–4 months, less than the interval between Voyager encounters. The rate of energy conversion is more than 10% of the total infrared heat flux for Jupiter, in contrast with earth where it is only 0.1% of the infrared heat flux. This hundred-fold difference suggests that the thermomechanical energy cycles are very different on the two planets

    Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

    Get PDF
    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change

    Observation of Top Quark Production in Proton-Nucleus Collisions

    Get PDF
    Peer reviewe

    Pseudorapidity dependence of long-range two-particle correlations in pPb collisions at root sNN=5.02 TeV

    Get PDF
    Peer reviewe

    Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    No full text
    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them
    corecore