12 research outputs found

    Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger

    Get PDF
    The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides

    The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability.

    Get PDF
    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis with a genomic library showed that the tupA gene could complement the phenotypes of the mutant. Screening of a collection of 240 mutants with constitutive expression of agsA identified sixteen additional pigment-secreting mutants, which were all mutated in the tupA gene. The phenotypes of the tupA mutants were very similar to the phenotypes of a tupA deletion strain. Further analysis of the tupA-17 mutant and the DeltatupA mutant revealed that TupA is also required for normal growth and morphogenesis. The production of the pigment at 37 degrees C is nitrogen source-dependent and repressed by ammonium. Genome-wide expression analysis of the tupA mutant during exponential growth revealed derepression of a large group of diverse genes, including genes related to development and cell wall biosynthesis, and also protease-encoding genes that are normally repressed by ammonium. Comparison of the transcriptome of up-regulated genes in the tupA mutant showed limited overlap with the transcriptome of caspofungin-induced cell wall stress-related genes, suggesting that TupA is not a general suppressor of cell wall stress-induced genes. We propose that TupA is an important repressor of genes related to development and nitrogen metabolism

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Clinical presentation, disease course, and outcome of COVID-19 in hospitalized patients with and without pre-existing cardiac disease : a cohort study across 18 countries

    Get PDF
    AIMS: Patients with cardiac disease are considered high risk for poor outcomes following hospitalization with COVID-19. The primary aim of this study was to evaluate heterogeneity in associations between various heart disease subtypes and in-hospital mortality. METHODS AND RESULTS: We used data from the CAPACITY-COVID registry and LEOSS study. Multivariable Poisson regression models were fitted to assess the association between different types of pre-existing heart disease and in-hospital mortality. A total of 16 511 patients with COVID-19 were included (21.1% aged 66-75 years; 40.2% female) and 31.5% had a history of heart disease. Patients with heart disease were older, predominantly male, and often had other comorbid conditions when compared with those without. Mortality was higher in patients with cardiac disease (29.7%; n = 1545 vs. 15.9%; n = 1797). However, following multivariable adjustment, this difference was not significant [adjusted risk ratio (aRR) 1.08, 95% confidence interval (CI) 1.02-1.15; P = 0.12 (corrected for multiple testing)]. Associations with in-hospital mortality by heart disease subtypes differed considerably, with the strongest association for heart failure (aRR 1.19, 95% CI 1.10-1.30; P < 0.018) particularly for severe (New York Heart Association class III/IV) heart failure (aRR 1.41, 95% CI 1.20-1.64; P < 0.018). None of the other heart disease subtypes, including ischaemic heart disease, remained significant after multivariable adjustment. Serious cardiac complications were diagnosed in <1% of patients. CONCLUSION: Considerable heterogeneity exists in the strength of association between heart disease subtypes and in-hospital mortality. Of all patients with heart disease, those with heart failure are at greatest risk of death when hospitalized with COVID-19. Serious cardiac complications are rare during hospitalization

    Clinical presentation, disease course, and outcome of COVID-19 in hospitalized patients with and without pre-existing cardiac disease: a cohort study across 18 countries

    No full text
    AIMS: Patients with cardiac disease are considered high risk for poor outcomes following hospitalization with COVID-19. The primary aim of this study was to evaluate heterogeneity in associations between various heart disease subtypes and in-hospital mortality. METHODS AND RESULTS: We used data from the CAPACITY-COVID registry and LEOSS study. Multivariable Poisson regression models were fitted to assess the association between different types of pre-existing heart disease and in-hospital mortality. A total of 16 511 patients with COVID-19 were included (21.1% aged 66-75 years; 40.2% female) and 31.5% had a history of heart disease. Patients with heart disease were older, predominantly male, and often had other comorbid conditions when compared with those without. Mortality was higher in patients with cardiac disease (29.7%; n = 1545 vs. 15.9%; n = 1797). However, following multivariable adjustment, this difference was not significant [adjusted risk ratio (aRR) 1.08, 95% confidence interval (CI) 1.02-1.15; P = 0.12 (corrected for multiple testing)]. Associations with in-hospital mortality by heart disease subtypes differed considerably, with the strongest association for heart failure (aRR 1.19, 95% CI 1.10-1.30; P < 0.018) particularly for severe (New York Heart Association class III/IV) heart failure (aRR 1.41, 95% CI 1.20-1.64; P < 0.018). None of the other heart disease subtypes, including ischaemic heart disease, remained significant after multivariable adjustment. Serious cardiac complications were diagnosed in <1% of patients. CONCLUSION: Considerable heterogeneity exists in the strength of association between heart disease subtypes and in-hospital mortality. Of all patients with heart disease, those with heart failure are at greatest risk of death when hospitalized with COVID-19. Serious cardiac complications are rare during hospitalization
    corecore