239 research outputs found

    Sciatic nerve movement in the deep gluteal space during hip rotations maneuvers

    Get PDF
    We hypothesize that the sciatic nerve in the subgluteal space has a specific behavior during internal and external coxofemoral rotation and during isometric contraction of the internal and external rotator muscles of the hip. In 58 healthy volunteers, sciatic nerve behavior was studied by ultrasound during passive internal and external hip rotation movements and during isometric contraction of internal and external rotators. Using MATLAB software, changes in nerve curvature at the beginning and end of each exercise were evaluated for longitudinal catches and axial movement for transverse catches. In the long axis, it was observed that during the passive internal rotation and during the isometric contraction of external rotators, the shape of the curve increased significantly while during the passive external rotation and the isometric contraction of the internal rotators the curvature flattened out. During passive movements in internal rotation, on the short axis, the nerve tended to move laterally and forward, while during external rotation the tendency of the nerve was to move toward a medial and backward position. During the isometric exercises, this displacement was less in the passive movements. Passive movements of hip rotation and isometric contraction of the muscles affect the sciatic nerve in the subgluteal space. Retrotrochanteric pain may be related to both the shear effect of the subgluteus muscles and the endoneural and mechanosensitive aggression to which the sciatic nerve is subjected

    The effect of initial local anesthetic dose with continuous interscalene analgesia on postoperative pain and diaphragmatic function in patients undergoing arthroscopic shoulder surgery: a double-blind, randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interscalene block (ISB) is commonly performed using 20-40 mL of local anesthetic. Spread to adjacent structures and consequent adverse effects including paralysis of the ipsilateral hemidiaphragm are frequent. Pain ratings, analgesic requirements, adverse events, satisfaction, function and diaphragmatic excursion were compared following interscalene block (ISB) with reduced initial bolus volumes.</p> <p>Methods</p> <p>Subjects undergoing arthroscopic rotator cuff repair were randomized to receive 5, 10, or 20 mL ropivacaine 0.75% for ISB in a double-blind fashion (N = 36). Continuous infusion with ropivacaine 0.2% was maintained for 48 h. Pain and diaphragmatic excursion were assessed before block and in the recovery unit.</p> <p>Results</p> <p>Pain ratings in the recovery room were generally less than 4 (0-10 NRS) for all treatment groups, but a statistically significant difference was noted between the 5 and 20 mL groups (NRS: 2.67 vs. 0.62 respectively; p = 0.04). Pain ratings and supplemental analgesic use were similar among the groups at 24 h, 48 h and 12 weeks. There were no differences in the quality of block for surgical anesthesia. Dyspnea was significantly greater in the 20 mL group (p = 0.041). Subjects with dyspnea had significant diaphragmatic impairment more frequently (Relative risk: 2.5; 95%CI: 1.3-4.8; p = 0.042). Increased contralateral diaphragmatic motion was measured in 29 of the 36 subjects. Physical shoulder function at 12 weeks improved over baseline in all groups (baseline mean SST: 6.3, SEM: 0.6; 95%CI: 5.1-7.5; 12 week mean SST: 8.2, SEM: 0.46; 95%CI: 7.3-9.2; p = 0.0035).</p> <p>Conclusions</p> <p>ISB provided reliable surgical analgesia with 5 mL, 10 mL or 20 mL ropivacaine (0.75%). The 20 mL volume was associated with increased complaints of dyspnea. The 5 mL volume was associated with statistically higher pain scores in the immediate postoperative period. Lower volumes resulted in a reduced incidence of dyspnea compared to 20 mL, however diaphragmatic impairment was not eliminated. Compensatory increases in contralateral diaphragmatic movement may explain tolerance for ipsilateral paresis.</p> <p>Trial Registration</p> <p>clinicaltrials.gov. identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00672100">NCT00672100</a></p

    The EFSUMB Guidelines and Recommendations for Musculoskeletal Ultrasound - Part I: Extraarticular Pathologies

    Get PDF
    The first part of the guidelines and recommendations for musculoskeletal ultrasound, produced under the auspices of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB), provides information about the use of musculoskeletal ultrasound for assessing extraarticular structures (muscles, tendons, entheses, ligaments, bones, bursae, fasciae, nerves, skin, subcutaneous tissues, and nails) and their pathologies. Clinical applications, practical points, limitations, and artifacts are described and discussed for every structure. After an extensive literature review, the recommendations have been developed according to the Oxford Centre for Evidence-based Medicine and GRADE criteria and the consensus level was established through a Delphi process. The document is intended to guide clinical users in their daily practice

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore