201 research outputs found

    Développements d'échantillonneurs passifs pour l'étude de la contamination des eaux par les micropolluants organiques

    Get PDF
    Préserver les ressources en eau est l une des problématiques environnementales majeures du 21è siècle. Pour faire face à cette nécessité, il est essentiel de mettre en place une surveillance réglementée de la qualité des eaux et des rejets se déversant dans le milieu aquatique et de développer de nouveaux outils d échantillonnage. L échantillonnage ponctuel est la technique la plus facile à mettre en œuvre. Toutefois, elle n est pas toujours représentative d un milieu hétérogène parfois soumis à des variabilités spatiales et temporelles importantes. L échantillonnage passif, notamment avec l outil POCIS (Polar Organic Chemical Integrative Sampler), est une approche complémentaire aux techniques traditionnelles, qui permet de concentrer des molécules organiques semi-polaires directement sur site. La pertinence du résultat obtenu (la concentration moyennée sur la durée d exposition), couplée à la simplicité de sa mise en œuvre en font a priori un outil de choix pour suivre des hydrosystèmes complexes.Dans ce contexte, des familles des composés diversifiées ont été sélectionnées : pesticides, composés pharmaceutiques, hormones stéroïdiennes et composés perfluorés. Au sein de chaque famille, plusieurs composés traceurs, présents dans l environnement, comportant des propriétés physico-chimiques variées et aux statuts règlementaires différents (Directive Cadre sur l Eau notamment), ont été choisis.Des essais d optimisation de design du POCIS (quantité et nature de phase réceptrice, nature de la membrane) ont été conduits, menant à la validation de la configuration classique dans le cas général. L influence de différents paramètres environnementaux pertinents : débit, température, matrice, présence de biofilm et dispositif de déploiement a été évaluée lors de calibrations de l outil réalisées dans des systèmes de complexité croissante : au laboratoire, sur pilote et sur site.Les différents déploiements sur site (effluent de STEP et rivière) ont permis de valider l utilisation de cet outil de prélèvement passif dans le cadre d un suivi environnemental. Le potentiel du POCIS a été pleinement confirmé, tant en termes de logistique que de résultats (justesse par rapport aux concentrations mesurées par des techniques classiques, intégration d événements ponctuels, limite de quantification ).The protection of water resources is one of the major environmental stakes of 21st century. Regulation concerning water quality and effluents is therefore definitely needed, as well as new approaches regarding water sampling. Spot sampling is the easiest strategy. However, it may not be representative of a heterogeneous matrix, with sometimes important spatial and temporal variability. Passive sampling, including POCIS (Polar Organic Chemical Integrative Sampler) is a complementary approach, which enables an on-site pre-concentration of semi-polar organic compounds. The relevance of the result (time-weighted average concentrations) and the ease to implement POCIS make it an appropriate tool to monitor complex hydrosystems.Within this work, various compound classes were selected: pesticides, pharmaceuticals, steroid hormones and perfluorinated compounds. Among each family, several tracer molecules, widely encountered in the environment, with different physic-chemical properties and regulatory status (particularly in the Water Framework Directive), were chosen.POCIS design optimization (amount and nature of sorbent, nature of membrane) was carried out, leading to the validation of the standard configuration for general purposes. The impact of different relevant environmental parameters (flow-rate, temperature, matrix, biofouling and deployment device), was assessed during calibrations of POCIS conducted in systems of increasing complexity: in the laboratory, at pilot-scale and on-site.All on-site deployments (WWTP effluent and river) enabled to validate the use of this passive sampling tool in the framework of an environmental monitoring. The potential of this tool was fully confirmed, both logistically and in terms of results (trueness compared to concentrations measured with traditional techniques, integration of punctual events, quantification limit ).BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Strengthening the health surveillance of marine mammals in the waters of metropolitan France by monitoring strandings

    Full text link
    peer reviewedMonitoring the health status of marine mammals is a priority theme that France aims to develop with the other European Union Member States in the next two years, in the context of the Marine Strategy Framework Directive. With approximately 5,000 km of coastline and for nearly ten years, France has been recording an average of 2,000 strandings per year, which are monitored by the National Stranding Network, managed by Pelagis, the observatory for the conservation of marine mammals from La Rochelle University and the French National Center for Scientific Research. Since 1972, this network has successively evolved from spatial and temporal faunistic description to, nowadays, the detection of major causes of mortality. It now aims to carry out epidemiological studies on a population scale. Thus, a strategy to strengthen the monitoring of marine mammals’ health status based on stranding data has been developed. This strategy will allow for a more accurate detection of anthropogenic cause of death as well as those of natural origin. It will allow the monitoring of time trends and geographical differences of diseases associated with conservation and public health issues while ensuring the early detection of emerging and/or zoonotic diseases of importance. It will also allow a better assessment of the consequences of human activities on these animal populations and on the environment. Thus, this strategy is fully in line with the “One Health” approach which implies an integrated vision of public, animal and environmental health. It is broken down into four surveillance modalities: (1) general event-based surveillance (GES); (2) programmed surveillance (PS); (3) specific event-based surveillance (SES); (4) and in the longer term, syndromic surveillance (SyS). This article describes the French strategy as well as these different surveillance modalities, the levels of examinations and the associated sampling protocols and finally, the method of standardisation of the data collected. The objective is to present the strategy developed at the French level in order to integrate it into a future strategy shared at the European level to standardise practices and especially complementary analysis, necessary for a better evaluation of the health status of these mobile marine species

    Evidence of adaptive evolutionary divergence during biological invasion

    Get PDF
    Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region

    Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats

    Get PDF
    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences

    Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age

    Get PDF
    When genetic constraints restrict phenotypic evolution, diversification can be predicted to evolve along so-called lines of least resistance. To address the importance of such constraints and their resolution, studies of parallel phenotypic divergence that differ in their age are valuable. Here, we investigate the parapatric evolution of six lake and stream threespine stickleback systems from Iceland and Switzerland, ranging in age from a few decades to several millennia. Using phenotypic data, we test for parallelism in ecotypic divergence between parapatric lake and stream populations and compare the observed patterns to an ancestral-like marine population. We find strong and consistent phenotypic divergence, both among lake and stream populations and between our freshwater populations and the marine population. Interestingly, ecotypic divergence in low-dimensional phenotype space (i.e. single traits) is rapid and seems to be often completed within 100 years. Yet, the dimensionality of ecotypic divergence was highest in our oldest systems and only there parallel evolution of unrelated ecotypes was strong enough to overwrite phylogenetic contingency. Moreover, the dimensionality of divergence in different systems varies between trait complexes, suggesting different constraints and evolutionary pathways to their resolution among freshwater systems

    Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation

    Get PDF
    Phenotypic evolution and its role in the diversification of organisms is a central topic in evolutionary biology. A neglected factor during the modern evolutionary synthesis, adaptive phenotypic plasticity, more recently attracted the attention of many evolutionary biologists and is now recognized as an important ingredient in both population persistence and diversification. The traits and directions in which an ancestral source population displays phenotypic plasticity might partly determine the trajectories in morphospace, which are accessible for an adaptive radiation, starting from the colonization of a novel environment. In the case of repeated colonizations of similar environments from the same source population this "flexible stem" hypothesis predicts similar phenotypes to arise in repeated subsequent radiations. The Midas Cichlid (Amphilophus spp.) in Nicaragua has radiated in parallel in several crater-lakes seeded by populations originating from the Nicaraguan Great Lakes. Here, we tested phenotypic plasticity in the pharyngeal jaw of Midas Cichlids. The pharyngeal jaw apparatus of cichlids, a second set of jaws functionally decoupled from the oral ones, is known to mediate ecological specialization and often differs strongly between sister-species. We performed a common garden experiment raising three groups of Midas cichlids on food differing in hardness and calcium content. Analyzing the lower pharyngeal jaw-bones we find significant differences between diet groups qualitatively resembling the differences found between specialized species. Observed differences in pharyngeal jaw expression between groups were attributable to the diet's mechanical resistance, whereas surplus calcium in the diet was not found to be of importance. The pharyngeal jaw apparatus of Midas Cichlids can be expressed plastically if stimulated mechanically during feeding. Since this trait is commonly differentiated - among other traits - between Midas Cichlid species, its plasticity might be an important factor in Midas Cichlid speciation. The prevalence of pharyngeal jaw differentiation across the Cichlidae further suggests that adaptive phenotypic plasticity in this trait could play an important role in cichlid speciation in general. We discuss several possibilities how the adaptive radiation of Midas Cichlids might have been influenced in this respect

    Testing ontogenetic patterns of sexual size dimorphism against expectations of the expensive tissue hypothesis, an intraspecific example using oyster toadfish (Opsanus tau)

    Get PDF
    Trade‐offs associated with sexual size dimorphism (SSD) are well documented across the Tree of Life. However, studies of SSD often do not consider potential investment trade‐offs between metabolically expensive structures under sexual selection and other morphological modules. Based on the expectations of the expensive tissue hypothesis, investment in one metabolically expensive structure should come at the direct cost of investment in another. Here, we examine allometric trends in the ontogeny of oyster toadfish (Opsanus tau) to test whether investment in structures known to have been influenced by strong sexual selection conform to these expectations. Despite recovering clear changes in the ontogeny of a sexually selected trait between males and females, we find no evidence for predicted ontogenetic trade‐offs with metabolically expensive organs. Our results are part of a growing body of work demonstrating that increased investment in one structure does not necessarily drive a wholesale loss of mass in one or more organs
    corecore