7,353 research outputs found

    Revising Limits on Neutrino-Majoron Couplings

    Get PDF
    Any theory that have a global spontaneously broken symmetry will imply the existence of very light neutral bosons or massless bosons (sometimes called Majorons). For most of these models we have neutrino-Majoron couplings, that appear as additional branching ratios in decays of mesons and leptons. Here we present an updated limits on the couplings between the electron, muon and tau neutrinos and Majorons. For such we analyze the possible effects of Majoron emission in both meson and lepton decays. In the latter we also include an analysis of the muon decay spectrum. Our results are ∣geα∣2<5.5x10−6|g_{e\alpha}|^{2}<5.5x10^{-6}, ∣gμα∣2<4.5x10−5|g_{\mu\alpha}|^{2}<4.5x10^{-5} and ∣gτα∣2<5.5x10−2|g_{\tau\alpha}|^{2}<5.5x10^{-2} at 90 % C. L., where α=e,μ,τ\alpha=e,\mu,\tau.Comment: 12 pages, 5 figure

    Reconciling thermal leptogenesis with the gravitino problem in SUSY models with mixed axion/axino dark matter

    Full text link
    Successful implementation of thermal leptogenesis requires re-heat temperatures T_R\agt 2\times 10^9 GeV, in apparent conflict with SUSY models with TeV-scale gravitinos, which require much lower T_R in order to avoid Big Bang Nucleosynthesis (BBN) constraints. We show that mixed axion/axino dark matter can reconcile thermal leptogenesis with the gravitino problem in models with m_{\tG}\agt 30 TeV, a rather high Peccei-Quinn breaking scale and an initial mis-alignment angle \theta_i < 1. We calculate axion and axino dark matter production from four sources, and impose BBN constraints on long-lived gravitinos and neutralinos. Moreover, we discuss several SUSY models which naturally have gravitino masses of the order of tens of TeV. We find a reconciliation difficult in Yukawa-unified SUSY and in AMSB with a wino-like lightest neutralino. However, T_R\sim 10^{10}-10^{12} GeV can easily be achieved in effective SUSY and in models based on mixed moduli-anomaly mediation. Consequences of this scenario include: 1. an LHC SUSY discovery should be consistent with SUSY models with a large gravitino mass, 2. an apparent neutralino relic abundance \Omega_{\tz_1}h^2\alt 1, 3. no WIMP direct or indirect detection signals should be found, and 4. the axion mass should be less than \sim 10^{-6} eV, somewhat below the conventional range which is explored by microwave cavity axion detection experiments.Comment: 25 pages including 15 .eps figures; updated version to coincide with published versio

    Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario

    Full text link
    A successful implementation of thermal leptogenesis requires the re-heat temperature after inflation T_R to exceed ~2\times 10^9 GeV. Such a high T_R value typically leads to an overproduction of gravitinos in the early universe, which will cause conflicts, mainly with BBN constraints. Asaka and Yanagida (AY) have proposed that these two issues can be reconciled in the context of the Peccei-Quinn augmented MSSM (PQMSSM) if one adopts a mass hierarchy m(sparticle)>m(gravitino)>m(axino), with m(axino) keV. We calculate the relic abundance of mixed axion/axino dark matter in the AY scenario, and investigate under what conditions a value of T_R sufficient for thermal leptogenesis can be generated. A high value of PQ breaking scale f_a is needed to suppress overproduction of axinos, while a small vacuum misalignment angle \theta_i is needed to suppress overproduction of axions. The large value of f_a results in late decaying neutralinos. To avoid BBN constraints, the AY scenario requires a low thermal abundance of neutralinos and high values of neutralino mass. We include entropy production from late decaying saxions, and find the saxion needs to be typically at least several times heavier than the gravitino. A viable AY scenario suggests that LHC should discover a spectrum of SUSY particles consistent with weak scale supergravity; that the apparent neutralino abundance is low; that a possible axion detection signal (probably with m_axion in the sub-micro-eV range) should occur, but no direct or indirect signals for WIMP dark matter should be observed.Comment: 28 pages including 21 .eps figures; high resolution pdf version available at http://www.nhn.ou.edu/~bae
    • …
    corecore