12 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Manipulation of Agricultural Habitats to Improve Conservation Biological Control in South America

    No full text
    International audienceStable and diversified agroecosystems provide farmers with important ecosystem services, which are unfortunately being lost at an alarming rate under the current conventional agriculture framework. Nevertheless, this concern can be tackled by using ecological intensification as an alternative strategy to recuperate ecosystem services (e.g., biological control of pests). To this end, the manipulation of agricultural habitats to enhance natural enemy conservation has been widely explored and reported in Western Europe and North America, whereas in other parts of the world, the investigation of such topic is lagging behind (e.g., South America). In this forum, we gathered published and unpublished information on the different ecological habitat management strategies that have been implemented in South America and their effects on pest control. Additionally, we identify the various challenges and analyze the outlook for the science of conservation biological control in South America. More specifically, we reviewed how different agricultural practices and habitat manipulation in South America have influenced pest management through natural enemy conservation. The main habitat manipulations reported include plant diversification (intercropping, insectary plants, agroforestry), conservation and management of non-crop vegetation, and application of artificial foods. Overall, we noticed that there is a significant discrepancy in the amount of research on conservation biological control among South American countries, and we found that, although intercropping, polycultures, and crop rotation have been reported in agroecosystems since pre-Inca times, more systematic studies are required to evaluate the true effects of habitat management to implement conservation biological control for pest control in South America
    corecore