6,477 research outputs found

    Blended Learning in Health Education: Three Case Studies

    Get PDF
    Blended learning in which online education is combined with face-to-face education is especially useful for (future) health care professionals who need to keep up-to-date. Blended learning can make learning more efficient, for instance by removing barriers of time and distance. In the past distance-based learning activities have often been associated with traditional delivery-based methods, individual learning and limited contact. The central question in this paper is: can blended learning be active and collaborative? Three cases of blended, active and collaborative learning are presented. In case 1 a virtual classroom is used to realize online problem-based learning (PBL). In case 2 PBL cases are presented in Second Life, a 3D immersive virtual world. In case 3 discussion forums, blogs and wikis were used. In all cases face-to-face meetings were also organized. Evaluation results of the three cases clearly show that active, collaborative learning at a distance is possible. Blended learning enables the use of novel instructional methods and student-centred education. The three cases employ different educational methods, thus illustrating diverse possibilities and a variety of learning activities in blended learning. Interaction and communication rules, the role of the teacher, careful selection of collaboration tools and technical preparation should be considered when designing and implementing blended learning

    Inconsistencies in Guidelines for Visual Health Surveillance of VDT Workers

    Get PDF
    Objectives: In Europe, 25% of workers use video display terminals (VDTs). Occupational health surveillance has been considered a key element in the protection of these workers. Nevertheless, it is unclear if guidelines available for this purpose, based on EU standards and available evidence, meet currently accepted quality criteria. The aim of this study was to appraise three sets of European VDT guidelines (UK, France, Spain) in which regulatory and evidence-based approaches for visual health have been formulated and recommendations for practice made. Methods: Three independent appraisers used an adapted AGREE instrument with seven domains to appraise the guidelines. A modified nominal group technique approach was used in two consecutive phases: first, individual evaluation of the three guidelines simultaneously, and second, a face-to-face meeting of appraisers to discuss scoring. Analysis of ratings obtained in each domain and variability among appraisers was undertaken (correlation and kappa coefficients). Results: All guidelines had low domain scores. The domain evaluated most highly was Scope and purpose, while Applicability was scored minimally. The UK guidelines had the highest overall score, and the Spanish ones had the lowest. The analysis of reliability and differences between scores in each domain showed a high level of agreement. Conclusions: These results suggest current guidelines used in these countries need an update. The formulation of evidence-base European guidelines on VDT could help to reduce the significant variation of national guidelines, which may have an impact on practical application.This study was supported by the National Institute for Occupational Safety and Health at Work of the Spanish Work and Immigration Ministry (INSHT). Project reference: 606/UAL/PVDVIS

    Status and Prospects of Top-Quark Physics

    Full text link
    The top quark is the heaviest elementary particle observed to date. Its large mass of about 173 GeV/c^2 makes the top quark act differently than other elementary fermions, as it decays before it hadronises, passing its spin information on to its decay products. In addition, the top quark plays an important role in higher-order loop corrections to standard model processes, which makes the top quark mass a crucial parameter for precision tests of the electroweak theory. The top quark is also a powerful probe for new phenomena beyond the standard model. During the time of discovery at the Tevatron in 1995 only a few properties of the top quark could be measured. In recent years, since the start of Tevatron Run II, the field of top-quark physics has changed and entered a precision era. This report summarises the latest measurements and studies of top-quark properties and gives prospects for future measurements at the Large Hadron Collider (LHC).Comment: 76 pages, 35 figures, submitted to Progress in Particle and Nuclear Physic

    Impact of glacial activity on the weathering of Hf isotopes – Observations from Southwest Greenland

    Get PDF
    Data for the modern oceans and their authigenic precipitates suggest incongruent release of hafnium (Hf) isotopes by chemical weathering of the continents. The fact that weathering during recent glacial periods is associated with more congruent release of Hf isotopes has led to the hypothesis that the incongruency may be controlled by retention of unradiogenic Hf by zircons, and that glacial grinding enhances release of Hf from zircons. Here we study the relationship between glacial weathering processes and Hf isotope compositions released to rivers fed by land-terminating glaciers of the Greenland Ice Sheet, as well as neighbouring non-glacial streams. The weathered source rocks in the studied area mostly consist of gneisses, but also include amphibolites of the same age (1.9 Ga). Hafnium and neodymium isotope compositions in catchment sediments and in the riverine suspended load are consistent with a predominantly gneissic source containing variable trace amounts of zircon and different abundances of hornblende, garnet and titanite. Glacially sourced rivers and non-glacial streams fed by precipitation and lakes show very unradiogenic Nd isotopic compositions, in a narrow range (ɛNd = −42.8 to −37.9). Hafnium isotopes, on the other hand, are much more radiogenic and variable, with ɛHf between −18.3 and −0.9 in glacial rivers, and even more radiogenic values of +15.8 to +46.3 in non-glacial streams. Although relatively unradiogenic Hf is released by glacial weathering, glacial rivers actually fall close to the seawater array in Hf-Nd isotope space and are not distinctly unradiogenic. Based on their abundance in rocks and sediments and their isotope compositions, different minerals contribute to the radiogenic Hf in solution with a decreasing relevance from garnet to titanite, hornblende and apatite. Neodymium isotopes preclude a much stronger representation of titanite, hornblende and apatite in solution, such as might result from differences in dissolution rates, than estimated from mineral abundance. The strong contrast in Hf isotope compositions between glacial rivers and non-glacial streams results mostly from different contributions from garnet and zircon, where zircon weathering is more efficient in the subglacial environment. A key difference between glacial and non-glacial waters is the water-rock interaction time. While glacial rivers receive continuous contributions from long residence time waters of distributed subglacial drainage systems, non-glacial streams are characterized by fast superficial drainage above the permafrost horizon. Therefore, the increased congruency in Hf isotope weathering in glacial systems could simply reflect the hydrological conditions at the base of the ice-sheet and glaciers, with zircon weathering contributions increasing with water-rock interaction time

    Direct Measurement of the Top Quark Mass at D0

    Full text link
    We determine the top quark mass m_t using t-tbar pairs produced in the D0 detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar W^- final states with one W boson decaying to q-qbar and the other to e-nu or mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +- 5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +- 4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst) GeV/C^2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented.Comment: 43 pages, 53 figures, 33 tables. RevTeX. Submitted to Phys. Rev.

    Migration of chemotactic bacteria in soft agar: role of gel concentration

    Get PDF
    We study the migration of chemotactic wild-type Escherichia coli populations in semisolid (soft) agar in the concentration range C = 0.15-0.5% (w/v). For C < 0.35%, expanding bacterial colonies display characteristic chemotactic rings. At C = 0.35%, however, bacteria migrate as broad circular bands rather than sharp rings. These are growth/diffusion waves arising because of suppression of chemotaxis by the agar and have not been previously reported experimentally to our knowledge. For C = 0.4-0.5%, expanding colonies do not span the depth of the agar and develop pronounced front instabilities. The migration front speed is weakly dependent on agar concentration at C < 0.25%, but decreases sharply above this value. We discuss these observations in terms of an extended Keller-Segel model for which we derived novel transport parameter expressions accounting for perturbations of the chemotactic response by collisions with the agar. The model makes it possible to fit the observed front speed decay in the range C = 0.15-0.35%, and its solutions qualitatively reproduce the observed transition from chemotactic to growth/diffusion bands. We discuss the implications of our results for the study of bacteria in porous media and for the design of improved bacteriological chemotaxis assays.Comment: 28 pages, 5 figures. Published online at http://www.sciencedirect.com/science/article/pii/S000634951100721

    Second Generation Leptoquark Search in p\bar{p} Collisions at s\sqrt{s} = 1.8 TeV

    Full text link
    We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron ppˉp\bar{p} collider at s\sqrt{s} = 1.8 TeV. This search is based on 12.7 pb1^{-1} of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio β\beta or to neutrino and quark with branching ratio (1β)(1-\beta). We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c2^{2} for β=1\beta = 1 and 89 GeV/c2^{2} for β=0.5\beta = 0.5 at the 95%\ confidence level.Comment: 18 pages, FERMILAB-PUB-95/185-

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
    corecore