38 research outputs found

    Physiological reactivity to stress and parental support: Comparison of clinical and non-clinical adolescents

    Get PDF
    An Alarm Stress Task was developed to study affect regulation in the context of parent-child interactions in adolescents (mean age = 12.72, standard deviation = 2.06) with (n = 20) and without (n = 20) mental health problems. Changes in heart rate (HR), pre-ejection period (PEP) and respiratory sinus arrhythmia (RSA) were used as indicators of affect regulation. HR increased, and PEP and RSA decreased significantly in reaction to a suggested failure on a simple task, indicating that this procedure induced affective arousal in adolescents. During reunion with the parent, RSA increased significantly. Support seeking on reunion was associated with stronger parasympathetic reactivity during stress and reunion, consistent with the model that the parasympathetic system is involved when affect is regulated by social engagement. Quality of parent-adolescent interactive behaviour was overall lower in the clinical sample. Individual and relationship-based processes of affect regulation may be simultaneously assessed, highlighting the continuing importance of the parent-child relationship in adolescence for affect regulation and mental health. Copyright © 2008 John Wiley & Sons, Ltd

    Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross-biobank research

    Get PDF
    A wealth of biospecimen samples are stored in modern globally distributed biobanks. Biomedical researchers worldwide need to be able to combine the available resources to improve the power of large-scale studies. A prerequisite for this effort is to be able to search and access phenotypic, clinical and other information about samples that are currently stored at biobanks in an integrated manner. However, privacy issues together with heterogeneous information systems and the lack of agreed-upon vocabularies have made specimen searching across multiple biobanks extremely challenging. We describe three case studies where we have linked samples and sample descriptions in order to facilitate global searching of available samples for research. The use cases include the ENGAGE (European Network for Genetic and Genomic Epidemiology) consortium comprising at least 39 cohorts, the SUMMIT (surrogate markers for micro- and macro-vascular hard endpoints for innovative diabetes tools) consortium and a pilot for data integration between a Swedish clinical health registry and a biobank. We used the Sample avAILability (SAIL) method for data linking: first, created harmonised variables and then annotated and made searchable information on the number of specimens available in individual biobanks for various phenotypic categories. By operating on this categorised availability data we sidestep many obstacles related to privacy that arise when handling real values and show that harmonised and annotated records about data availability across disparate biomedical archives provide a key methodological advance in pre-analysis exchange of information between biobanks, that is, during the project planning phase

    Relocation of the NIb gene in the tobacco etch potyvirus genome

    Get PDF
    Supplemental material for this article may be found at http://dx.doi.org/10.1128/JVI.03336-13[EN] Potyviruses express most of their proteins from a long open reading frame that is translated into a large polyprotein processed by three viral proteases. To understand the constraints on potyvirus genome organization, we relocated the viral RNA-dependent RNA polymerase (NIb) cistron to all possible intercistronic positions of the Tobacco etch virus (TEV) polyprotein. Only viruses with NIb at the amino terminus of the polyprotein or in between P1 and HC-Pro were viable in tobacco plants.This research was supported by grant BIO2011-26741 from the Spanish Ministerio de Economia y Competitividad (MINECO) to J.-A.D., grant PROMETEO/2010/019 from Generalitat Valenciana to S. F. E. and J.-A.D., and grants BFU2012-30805 and 22371 from MINECO and the John Templeton Foundation, respectively, to S. F. E. E. M. was supported by a predoctoral fellowship (AP2012-3751) from the Spanish Ministerio de Educacion, Cultura y Deporte. M.P.Z. was supported by a Juan de la Cierva postdoctoral contract (JCI-2011-10379) from MINECO and a Rubicon grant from the Netherlands Organization for Scientific Research (www.nwo.nl).Majer, E.; Salvador, Z.; Zwart, MP.; Willemsen, A.; Elena Fito, SF.; Daros Arnau, JA. (2014). Relocation of the NIb gene in the tobacco etch potyvirus genome. Journal of Virology. (88):4586-4590. https://doi.org/10.1128/JVI.03336-13S4586459088Roossinck, M. J. (2011). The big unknown: plant virus biodiversity. Current Opinion in Virology, 1(1), 63-67. doi:10.1016/j.coviro.2011.05.022Chirico, N., Vianelli, A., & Belshaw, R. (2010). Why genes overlap in viruses. Proceedings of the Royal Society B: Biological Sciences, 277(1701), 3809-3817. doi:10.1098/rspb.2010.1052Belshaw, R., Pybus, O. G., & Rambaut, A. (2007). The evolution of genome compression and genomic novelty in RNA viruses. Genome Research, 17(10), 1496-1504. doi:10.1101/gr.6305707Nguyen, M., & Haenni, A.-L. (2003). Expression strategies of ambisense viruses. Virus Research, 93(2), 141-150. doi:10.1016/s0168-1702(03)00094-7Riechmann, J. L., Lain, S., & Garcia, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73(1), 1-16. doi:10.1099/0022-1317-73-1-1Urcuqui-Inchima, S., Haenni, A.-L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74(1-2), 157-175. doi:10.1016/s0168-1702(01)00220-9Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105Li, X. H., & Carrington, J. C. (1995). Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proceedings of the National Academy of Sciences, 92(2), 457-461. doi:10.1073/pnas.92.2.457Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis. Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922Majer, E., Daròs, J.-A., & Zwart, M. (2013). Stability and Fitness Impact of the Visually Discernible Rosea1 Marker in the Tobacco etch virus Genome. Viruses, 5(9), 2153-2168. doi:10.3390/v5092153Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004Chen, C.-C., Chen, T.-C., Raja, J. A. J., Chang, C.-A., Chen, L.-W., Lin, S.-S., & Yeh, S.-D. (2007). Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Research, 130(1-2), 210-227. doi:10.1016/j.virusres.2007.06.014Merits, A., Runeberg-Roos, P., Rajamäki, M.-L., Puustinen, P., Mäkeläinen, K., Saarma, M., … Kekarainen, T. (2002). Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. Journal of General Virology, 83(5), 1211-1221. doi:10.1099/0022-1317-83-5-1211Parks, T. D., Howard, E. D., Wolpert, T. J., Arp, D. J., & Dougherty, W. G. (1995). Expression and Purification of a Recombinant Tobacco Etch Virus NIa Proteinase: Biochemical Analyses of the Full-Length and a Naturally Occurring Truncated Proteinase Form. Virology, 210(1), 194-201. doi:10.1006/viro.1995.1331KIM, D.-H., PARK, Y. S., KIM, S. S., LEW, J., NAM, H. G., & CHOI, K. Y. (1995). Expression, Purification, and Identification of a Novel Self-Cleavage Site of the NIa C-Terminal 27-kDa Protease of Turnip Mosaic Potyvirus C5. Virology, 213(2), 517-525. doi:10.1006/viro.1995.0024Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208Fernández-Fernández, M. R., Mouriño, M., Rivera, J., Rodríguez, F., Plana-Durán, J., & García, J. A. (2001). Protection of Rabbits against Rabbit Hemorrhagic Disease Virus by Immunization with the VP60 Protein Expressed in Plants with a Potyvirus-Based Vector. Virology, 280(2), 283-291. doi:10.1006/viro.2000.0762Sánchez, F., Sáez, M., Lunello, P., & Ponz, F. (2013). Plant viral elongated nanoparticles modified for log-increases of foreign peptide immunogenicity and specific antibody detection. Journal of Biotechnology, 168(4), 409-415. doi:10.1016/j.jbiotec.2013.09.002Masuta, C., Yamana, T., Tacahashi, Y., Uyeda, I., Sato, M., Ueda, S., & Matsumura, T. (2000). Development of clover yellow vein virus as an efficient, stable gene-expression system for legume species. The Plant Journal, 23(4), 539-546. doi:10.1046/j.1365-313x.2000.00795.xBeauchemin, C., Bougie, V., & Laliberté, J.-F. (2005). Simultaneous production of two foreign proteins from a potyvirus-based vector. Virus Research, 112(1-2), 1-8. doi:10.1016/j.virusres.2005.03.001Kelloniemi, J., Mäkinen, K., & Valkonen, J. P. T. (2008). Three heterologous proteins simultaneously expressed from a chimeric potyvirus: Infectivity, stability and the correlation of genome and virion lengths. Virus Research, 135(2), 282-291. doi:10.1016/j.virusres.2008.04.006Whitham, S. A., Yamamoto, M. L., & Carrington, J. C. (1999). Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(2), 772-777. doi:10.1073/pnas.96.2.772Dolja, V. V., Hong, J., Keller, K. E., Martin, R. R., & Peremyslov, V. V. (1997). Suppression of Potyvirus Infection by Coexpressed Closterovirus Protein. Virology, 234(2), 243-252. doi:10.1006/viro.1997.8660Dietrich, C. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. Journal of General Virology, 84(10), 2871-2876. doi:10.1099/vir.0.19245-0Rajamäki, M.-L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F., & Valkonen, J. P. T. (2005). A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology, 342(1), 88-101. doi:10.1016/j.virol.2005.07.01

    Оценка качества образования на основе компетентностного подхода

    Get PDF
    В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход

    Совершенствование технологий для осуществления рентабельного процесса добычи нефти на малодебитном фонде скважин

    Get PDF
    Материалы XII Междунар. науч. конф. студентов, магистрантов, аспирантов и молодых ученых, Гомель, 16–17 мая 2019 г

    Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    Get PDF
    Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74 < r(g) < -0.55) and blood pressure (-0.35 < r(g) < -0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization

    Erratum: Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    Get PDF
    Correction to article number 15805 published in June 2017 in Nature Communications, vol 8

    Erratum: Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    Get PDF
    Correction to article number 15805 published in June 2017 in Nature Communications, vol 8

    Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Get PDF
    Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain

    Antibodies against neural antigens in patients with acute stroke: joint results of three independent cohort studies

    No full text
    Background and purpose: Ischemic stroke (IS) and hemorrhagic stroke (HemS) typically lead to a breakdown of the blood–brain barrier with neural antigen presentation. This presentation could potentially generate destructive auto-immune responses. Pre-existing antineuronal and antiglial antibodies (AA), predominantly NMDA receptor antibodies, have been reported in patients with stroke. This article summarizes three independent prospective studies, the Lübeck cohort (LC), Barcelona cohort (BC), and Heidelberg cohort (HC), exploring the frequency and clinical relevance of AA in patients with acute stroke (AS). Methods: In all cohorts together, 344 consecutive patients admitted with AS (322 × IS, 22 × HemS) were screened for AA in serum at admission. Clinical outcome parameters as well as a second AA screening were available at 30 days in the LC or at 90 days in the BC. A control group was included in the BC (20 subjects free from neurological disease) and the HC (78 neurological and ophthalmological patients without evidence for stroke). Results: The rate of positivity for AA was similar in control subjects and AS patients (13%, 95% CI [7%, 22%] vs. 13%, 95% CI [10%, 17%]; p = 0.46) with no significant difference between cohorts (LC 25/171, BC 12/75, HC 9/98). No patient had developed new AA after 30 days, whereas 2 out of 60 patients had developed new AA after 90 days. AA positive patients did not exhibit significant differences to AA negative patients in stroke subtype (LC, BC), initial stroke severity (BC, LC, HC), infarct volume (BC), and functional status at admission (BC, LC, HC) and follow-up (BC, LC). Conclusions: AS does not induce AA to a relevant degree. Pre-existing AA can be found in the serum of stroke patients, but they do not have a significant association with clinical features and outcomes.The research leading to these results received funding from the European Union’s Seventh Framework Program FP7 under Grant Agreement 607962 (nEUROinflammation) and from the ISCIII-Subdirección General de Evaluación (FIS PI15/00430, PI Prof. Ángel Chamorro) cofinanced by the Fondo Europeo de Desarrollo Regional (FEDER)
    corecore