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Jouke-Jan Hottenga14, Jan-Eric Litton1,16, Juha Karvanen17,18, Dorret I Boomsma14, Leif Groop5,9,
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A wealth of biospecimen samples are stored in modern globally distributed biobanks. Biomedical researchers worldwide need to

be able to combine the available resources to improve the power of large-scale studies. A prerequisite for this effort is to be able

to search and access phenotypic, clinical and other information about samples that are currently stored at biobanks in an

integrated manner. However, privacy issues together with heterogeneous information systems and the lack of agreed-upon

vocabularies have made specimen searching across multiple biobanks extremely challenging. We describe three case studies

where we have linked samples and sample descriptions in order to facilitate global searching of available samples for research.

The use cases include the ENGAGE (European Network for Genetic and Genomic Epidemiology) consortium comprising at least

39 cohorts, the SUMMIT (surrogate markers for micro- and macro-vascular hard endpoints for innovative diabetes tools)

consortium and a pilot for data integration between a Swedish clinical health registry and a biobank. We used the Sample

avAILability (SAIL) method for data linking: first, created harmonised variables and then annotated and made searchable

information on the number of specimens available in individual biobanks for various phenotypic categories. By operating on this

categorised availability data we sidestep many obstacles related to privacy that arise when handling real values and show that

harmonised and annotated records about data availability across disparate biomedical archives provide a key methodological

advance in pre-analysis exchange of information between biobanks, that is, during the project planning phase.
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INTRODUCTION

Biological resources, such as cells, tissues, or biomolecules, are
considered to be the essential raw material for the advancement of
biotechnology, human health and for research and development in life
sciences (see Table 1 for the terminology used in this manuscript).1

These biological resources are stored in biobanks and are annotated

with digitalised information about the study subjects such as health
status, nutrition, lifestyle and environmental exposure. In recent years,
biobank-based studies of genetic and molecular factors predisposing to
disease, as well as studies of interactions between genetic and
environmental or lifestyle factors, have gained momentum.2 Meta-
analysis techniques have been used to increase sample size and thereby
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the power to identify genomic regions associated with a variety of
clinical outcomes.3 However, researchers trying to integrate informa-
tion across sample collections in the planning phase of a cross-biobank
research project face an unprecedented burden of data management
tasks. These include the following: (a) determining the types of
phenotypic data and biospecimens that are available for research
and (b) quantifying the corresponding sample sizes. In practice,
retrieving data collected by multiple biobanks over decades is not a
trivial task. The white paper ‘Creating a global alliance to enable
responsible sharing of genomic and clinical data’1,4 presents many of
the challenges for such biomedical data integration such as harmoni-
sation and data security, and pinpoints important issues for the
information flow in cross-biobank studies such as data heterogeneity
and the lack of harmonised access policies.
Every biobank has internal standards for record keeping, quality

assurance and medical procedures. Furthermore, of particular
relevance in pan-European and trans-ethnic studies, most of the
semantic information is captured in a national language; thus, transla-
tion is required for an international research project.2,5,6 Data hetero-
geneity is usually addressed on a project-by-project basis: first, the
aims of a research project are defined and then biobanks identify and
extract relevant data from their internal databases. The design of the
project delineates variables of interest (VOIs), which may be different
from the variables recorded by the original questionnaires and
measurement protocols followed during sample collection. The
process of assessing how well a biobank variable is suited for a
meta-analysis project and combining data sets wherever variables are
considered to be comparable is known as transformation, harmonisa-
tion or mapping. In prospective harmonisation, investigators from
several research projects will agree on a core set of variables before
data collection,3,7 whereas retrospective harmonisation targets
synthesis of information already collected by existing legacy studies.8

Specific standardised measures have been developed by a number of

international organisations, including ILO, UNESCO, OECD and
WHO, to facilitate research involving cross-national comparisons with
varying scope and success in implementation. Addressing the many
challenges requires that researchers have proper knowledge and
resources to help them easily, but formally and explicitly, achieve
data harmonisation and integration processes that are scientifically
valid and replicable,9 and that lead to implementation of adequate
software solutions.
Access to the actual data about biomaterials in biobank collections,

including tests on the samples that result in clinical or epidemiological
data, needs to comply with the legal requirements of the country in
which the biobank is placed and to the ethical protocols of the organi-
sations involved (http://www.hsern.eu).2,10 This makes it impossible to
allow indiscriminate online access to actual data on VOIs. However,
these privacy issues can be sidestepped in the initial phase of study
design, if biobanks are able to provide information about availability of
samples rather than complete sample data online.
Current online information systems for biobanks are typically

built as ‘catalogues’, where users can query for available sample
collections based on a general description of the collection content and
obtain summary statistics with the total number of obser-
vations and available variables. Such systems lack information on
potential availability of variable values sample-by-sample and
variable-by-variable. Examples of major biobank catalogues include
the EuroBioBank catalogue (http://www.eurobiobank.org/en/ser-
vices/CatalogueHome.html), the BBMRI (Biobanking and BioMole-
cular Resource Infrastructure) catalogue of European biobanks
(https://www.bbmriportal.eu) and the BBMRI-LPC (The Biobanking
and Biomolecular Resources Research Infrastructure–Large Prospec-
tive Cohorts) catalogue (http://mineral.iarc.fr). BBMRI-LPC provides
a detailed catalogue of the resources that are available within the
participating cohorts of the BBMRI-LPC and is an extension of the
BBMRI biobank catalogue.

Table 1 Terminology used in this manuscript

Specimen An individual portion of human, animal, plant, mineral and so on, materials used for scientific research project

Biospecimen An individual portion of a substance of biological origin, for example, tissue sample, blood sample, saliva sample and so on, derived from a

single participant at a specific time and intended to be used for scientific research project, which in the context of this study is stored in a

biobank

Sample A synonym for ‘biospecimen’, also called ‘biosample’, meaning, for example, a blood sample, tissue sample, urine sample and so on

A number of biospecimens selected for a particular scientific research project intended to be representative of a given population. For

example, an experimental sample might contain 200 cancerous tissue biospecimen samples from various individuals across Europe or 1000

biospecimens of blood taken from various individuals within the United Kingdom

Biomedical data archive or

data bank

A storage and retrieval facility or service for biological and medical data. All data archives have three primary functions: the collection,

storage and preservation of data

Phenotypic variables A characteristic that varies across a population of interest, for example, height, weight, eye colour, blood pressure and the presence or the

absence of various clinical conditions such as diabetes

VOI A phenotypic or genotypic variable that is relevant for a particular research project. A selection of such variables is referred to as the VOIs for

the research project

HV A single unified vocabulary that has been compiled from several individual vocabulary sources. Where there is partial overlap in the meaning

of terms from separate vocabularies but with different exact labels used, synonyms from each of the underlying vocabularies are preserved in

the resulting HV

Metadata Information about, or description of, data. The metadata describing a biospecimen sample collection might include, for example, the number

of specimens stored in the collection and summary statistics about the population from which the specimens were collected

CV A list of words and phrases intended for use to mark up or index data, selected such that each unit in the vocabulary is unique and

unambiguous within the overall vocabulary and thereby the use of controlled vocabularies ensure consistency in annotation

GWAS Examines genetic variants, such as SNPs, across the genome in various individuals to see whether any variant is associated with a phenotype,

for example, a disease such as diabetes

Abbreviatons: CV, controlled vocabulary; GWAS, genome-wide association study; HV, harmonised vocabulary; SNP, single-nucleotide polymorphisms; VOI, variables of interest.
These definitions have been synthesised and modified from various sources and discussed among the authors, in order to achieve consistency across the manuscript. Many of these terms are used
in different ways in different contexts.
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GWAS Central (http://www.gwascentral.org) is a portal for querying
a large collection of genetic association studies for summary-level
findings. The BioSample database11 contains information about bio-
logical samples, in particular samples referenced from other databases at
the European Bioinformatics Institute. A recent initiative to standardise
biobank data sharing is MIABIS 1.0 (Minimum Information About
BIobank data Sharing), which describes the data elements that are
considered common for all biobanks.12 It operates on the level of
aggregated biobank information and hence does not offer accurate
estimates of sample availability in the context of research questions, but
is rather targeted towards higher-level overviews. Queries such as ‘For
how many DNA samples in which cohorts are there Type 2 Diabetes
status records, as well as fasting glucose concentration and body-mass
index?’ are not executable in such catalogues.
At the moment, online data resources serving biobank infor-

mation typically only offer a binary choice between a data access
scheme that is ‘open to all’ and one that is ‘highly restricted’. There is a
lack of reliable systems that provide the essential information across
biobanks for planning project design and conducting power calcula-
tions that are required for successful grant applications. This creates an
obstacle within a research workflow of large meta-studies, that is,
50 000–100 000 samples from multiple collections, in which the
processing of data access applications often takes longer than the data
analysis itself.
The aim of our study was to demonstrate practical applications of a

formalised methodological framework for integration of data across
biobanks, which, despite numerous community efforts, developed
software and established catalogues, has not been published. To
achieve this aim, we present the sample availability (SAIL) method.
SAIL operates on availability data (ie, data about data or metadata):
information is provided for each sample regarding whether a value for
a given phenotypic or genotypic variable exists or not without
disclosing the value per se, thus allowing researchers to temporarily
ignore privacy issues. The method is particularly useful at the onset of
large-scale omics studies to investigate specific research questions as
well as in raising awareness among researchers in general about the
content of biobank data by making the data easier to locate, interpret
and incorporate into the design of research studies. Later, in the data
analysis part of the project, when real data are to be exchanged, the
power calculations conducted in the planning phase with SAIL help
generate a detailed study description that may be used in the
submission of the application for data access to the relevant ethical
committees.
We demonstrate applications of SAIL for data harmonisation and

linking using three scenarios of international collaborations: (i) inte-
gration of sample information on 39 cohorts in the ENGAGE
consortium, (ii) integration of sample information on 15 sample
collections in the SUMMIT (surrogate markers for micro- and macro-
vascular hard endpoints for innovative diabetes tools) consortium and
(iii) a pilot for data integration between a Swedish clinical health
registry and a biobank. In this study we start by describing the SAIL
method, proceed to describe the three case studies and conclude with
discussing the advantages of the method and future directions.

METHODS
We have developed a method to address the issues of retrospective data
harmonisation and querying of data about samples across biobanks. The
method comprises the following:

� Two data formats for capturing the harmonised data,
� A process for data harmonisation

and it was practically implemented using a software application (SAIL) to
make the integrated availability data searchable and accessible online.

SAIL software application
In an earlier publication, an information system for availability data integration
has already been described. The SAIL software package13 is a web-based system
that provides (1) an interface for harmonisation and submission of sample and
phenotype information that is available in various collections, and (2) a search
engine for surveying which data from which cohorts could be combined for
specific tasks. Rather than presenting the summary content for each collection,
it allows resource discovery across biobanks at the level of individual records.
Owing to the links between synonymous variables, for example, similar but not
equivalent measurements, and to the annotation structure (time point, type of
measurements, etc), samples can be searched for by variable, for example,
‘glucose’, as well as by a more specific statement, for example, ‘fasting glucose’.
For more information about the SAIL data format and software, see
Supplementary S4.

Data formats
Harmonisation in the SAIL method concerns two levels of data:

� Metadata or ‘vocabularies’ – collections of terms that are specific to a
research project (medical topic) or to a collection of samples. Different types
of sample collections, studies and even different users may apply disparate
terms when describing the samples.

� Data or ‘samples’ – an index of sample IDs by terms stored in vocabularies.
Indexing of samples that are available across various resources is essential for
effective cross-biobanking research project design, for example, to estimate
accurately the number of samples available for a given multi-biobank project.
In the SAIL method, indexing can be done using either harmonised or
original terms.

Two formats are required for effective communication between IT specialists,
data managers and clinicians throughout the process of harmonisation.
(1) Vocabularies are taxonomically structured sets of parameters that are used
for annotating samples (see example in Supplementary S1). Harmonised and
original variables are mapped between vocabularies and either can be used for
annotation of samples. The grammar for description of terms is universal and
allows for linking terms across vocabularies or studies. In this manner, external
shared vocabularies and ontologies can be integrated with internal biobank-
specific vocabularies. Examples of relevant external ontologies include the Gene
Ontology (GO)14, the Phenotype and Trait Ontology and the Human
Phenotype Ontology.15 (2) The data and availability information format is
equally suitable for sample data collection or for sample availability informa-
tion. In the first case, the matrix of Sample IDs (rows) vs Harmonised Terms
(columns) is filled with actual parameter values (see Listing F2 in
Supplementary S1, MetS:BP and MetS:GLUTM.concentration). In the second
case, that is, when only availability data can be collected, the matrix contains ‘0’
for ‘value is not recorded’ and ‘1’ for ‘value is available’ for each sample–
parameter pair.

Data harmonisation process
Data harmonisation within the SAIL method consists of the following steps:

(i) Creation of a harmonised vocabulary (HV) for VOIs.
(ii) Mapping the HV to the original biobank variables.
(iii) Integrating information on the presence of VOIs values for each sample.

Original variables, that is, those for which values are recorded during collection
of biospecimens, as well as harmonised variables, that is, those that are used in a
research project later on, are organised as controlled vocabularies or taxonomic
structures and stored in an information system. An overview of the phases of data
harmonisation in the context of SAIL is illustrated in Figure 1.
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Based on the experiences obtained in various projects and consortia, we

present in Figure 2 a typical harmonisation workflow for the SAIL method

facilitated by a web-based system. The process involves researchers,

system administrators and local data managers at sample collections.

Definitions of variables are formulated by leading researchers, then translated

into a system configuration and revised by data providers (data managers

at biobanks). On receipt of feedback from cohorts, terms are revised and the
next version is released.

RESULTS

We have applied the SAIL methodology in three projects (Table 2):
(1) within the ENGAGE consortium that pioneered the method;

Database

Database

Phenotype
value

availability

Variable matrix
HV OV1 … OVm

v1

v2

…
vn

HV v1 … vn

s1 0 … 1

s2 1 …
… … … …

sk male … 30

Mappings between
HV and OV

Collection of
availability data or
real sample data
from several
resources

Phenotype
values Availability data

Sample Availability System
(public). Search and

sample counts.

Sample Information
Management System

(access control) 
Harmonization of
various sample
descriptions

SAIL method for harmonisation
OV–original vocabulary
HV–harmonized vocabulary

Sample matrix

| HV |  v1 | v2  | … | vn |

Figure 1 Data harmonisation proceeds on two levels: first, indexing of biospecimens in harmonised terms and, second, harmonisation of variables and
descriptors. The left side of the image shows the process of collecting sample information or sample availability information from several resources, that is,.
from biobanks, into a database. The right side of the image shows the format for such data submission, defined by harmonising variables. So-called ‘original’
vocabularies are descriptors and terms that are used for annotating samples at the biobanks and collections (for the format, see the Methods section).
‘Harmonised’ vocabularies are used as common representation of several varieties of original sample descriptors and these are used as submission format and
as a configuration of an online resource discovery tool, Sample Availability Information System.

Figure 2 Workflow and responsibilities for the iterative harmonisation process in the SAIL method, involving multiple curation teams and facilitated by a web-
based application. (1) Providing a description of the available data from individual cohorts and the requirements from the researcher. (2) Based on this data,
the system administrator creates pre-definitions of a possible parameter setting. (3) Testing and verifying the parameter setting by data provider. (4) Offering
a pilot instance to the consortium user for checking and verifying the system or for getting any feedback for further alterations to the configuration.
(5) Feedback is provided by the researcher and the entire process is iterated.
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(2) for linking Swedish national biobanks with clinical registry data at
the Karolinska Institutet; and (3) for generating information about
sample availability in the SUMMIT project. It should be noted that all
three applications consistently used the same methodology to achieve
harmonised and interlinked data.

Case study 1: sample availability in the ENGAGE consortium
The ENGAGE consortium was established in 2008, with the main
objective of sharing and analysing data from a number of already
established cohorts comprising more than 80 000 GWAS scans, and
DNA and serum/plasma samples from over 600 000 individuals16 in
39 cohorts distributed over 18 partner organisations. The SAIL
method was applied within the ENGAGE consortium in the
following steps:

� Data modelling and design.
� Mapping and data collection.

Data modelling and design
Formulation of use cases. The main driver behind the harmonisation
work in ENGAGE was the need for fast quantification of the number
of samples that were potentially available for genome-wide meta-
analysis studies across multiple cohorts. A set of use cases was
identified through multiple discussions with potential users (statisti-
cians and epidemiologists), for instance:

� For how many DNA samples in each cohort are there type 2
diabetes status records, as well as fasting glucose concentration
and BMI?

� Which covariates can be used during the analysis?
� How many samples would be available if the study was limited to
individuals younger than 45 years old?

Requirements for the data submission format and interactive
interface were also collected during these meetings and through
analysis of the harmonisation and mapping workflow.

Sample data. Sample data that were provided by participating
biobanks came with Supplementary Information on in-house

descriptions of data types and data models. Data types were assessed
and decisions were made on their suitability.

Semantic information. For the organisation of indexing terms to be
used in SAIL and their relationships, a number of existing vocabularies
and resources for creation, storage and mapping of ontologies were
reviewed: GO,14 OBO,17 EFO,18 phenX7 and dbGAP.19 Several
initiatives and projects based on semantic web technologies providing
solutions for tagging objects with concepts and inter-relating the
concepts, such as conceptWiki, and structured semantic search tools,
such as ViziQuer,20 were surveyed. First, a draft structure for capturing
information about variables in SAIL was proposed. Next, it was
completed and refined iteratively over several rounds of loading data,
testing and discussing with the users.

Mapping and data collection
The first prototype of SAIL was test run on a cumulative index of
samples from 10 collections within the ENGAGE consortium. The
index was based on 61 variables, which were suggested by data analysts
from the University of Oxford and Institute for Molecular Medicine
Finland (FIMM) working on the identification of genetic markers for
diseases including type 2 diabetes and cardiovascular disease. Selected
VOIs were grouped in a metabolic syndrome (MetS) vocabulary
(Supplementary S1). The initial format for the description of terms
(name, definition, unit, time point, etc) was suggested by epidemiol-
ogists and subsequently cross-checked against the standard format
proposed by Data Schema and Harmonization Platform for Epide-
miological Research (DataSHaPER)6, the major international initiative
for the best practices in biospecimen data harmonisation. On
finalisation of the harmonised MetS vocabulary, the local data
managers at each collection:

� Mapped local sample descriptions (variables) to MetS,
� Extracted sample data from the biobank database for those samples
that were relevant to at least some of the variables in MetS,

� Replaced the values with 1 and missing values with 0 or left them
blank in the extracted matrix and

� Sent the availability matrix to the SAIL development team.

Collaborating cohorts that were not part of the ENGAGE con-
sortium submitted the second batch of data. Data were either provided

Table 2 Summary of three applications where the SAIL method was applied

ENGAGE Karolinska Institutet SUMMIT

Number of linked

individuals/samples

184 000 1000 30 494

Number of linked

collections

15 2 (1 Biobank+1 health registry) 15

Number of harmo-

nised variables

92 13 43

Availability software

used

SAIL SAIL SAIL

Key purpose Sharing and analysing the data from 39

cohorts among 18 consortium partners

Identify subsets in health registry for which there are

biobank data available

Assistance in design of GWAS meta-studies

for complications in diabetic patients

Vocabulary MetS (Supplementary S1) bbqr (Supplementary S2) Summit (Supplementary S3)

Web address Public: sail.simbioms.org Public (simulated data): sail.simbioms.org/bbqr Private:

restricted access user: sailuser, pwd: karolinska

Public (simulated data): sail.simbioms.org/

summit Private: restricted access

Abbreviations: ENGAGE, European Network for Genetic and Genomic Epidemiology; GWAS, genome-wide association study; MetS, metabolic syndrome; SAIL, sample availability; SUMMIT, surrogate
markers for micro- and macro-vascular hard endpoints for innovative diabetes tools.
For the Karolinska Institutet and SUMMIT projects there is a public instance of the SAIL software with simulated data, whereas the private instance with real data has restricted access.
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in the MetS vocabulary or, in case of a different clinical scope, in other
vocabularies. In the latter case, related variables from individual
vocabularies were linked in SAIL. A list of data contributors is
available in Table 3.

Case study 2: using SAIL to link biobanks with clinical data
Clinical health registries record information about patients in health
care, with the main objective to be able to follow up on the quality of
health care and also provide a gold mine of data for research.21,22 The
clinical data in national health registries are often highly sensitive and
administered by physicians. In a previous study, a federated archi-
tecture of clinical registries was suggested and implemented in
Sweden.23 Such a system, however, assumed adoption of exactly the
same database schema by all interconnected resources (ie, biobanks in
this case), which proved to be costly and often not feasible due to
differences in the underlying medical protocols and standard operating
procedures.
We applied the SAIL method to a biobank at the Karolinska

Institutet, Sweden, containing biospecimens in the form of DNA,
serum and blood from patients. We integrated this availability data
with a selected subset of the Swedish national prostate cancer quality
registry comprising information on diagnosis, treatment and follow-
up. A set of use cases was defined to be:

� For how many prostate cancer patients older than 60 years with a
Gleason score above 6 do we have DNA stored in the biobank?

� For the patients with regional lymph node metastasis present, how
many have answered a questionnaire and have blood plasma
available in the biobank?

� For patients diagnosed with prostate cancer between the year 1990
and 2010 with a PSA value above 8, how many have DNA or blood
plasma stored in the biobank?

The information originated from different resources and was linked
using the patient’s Swedish personal number and a custom vocabulary
that was developed (Supplementary S2). A demo version of the SAIL
system of the same structure and populated with simulated values is
available from sail.simbioms.org/bbqr.

Case study 3: sample availability within the SUMMIT consortium
SUMMIT (http://imi-summit.eu) is a pan-European research con-
sortium that works on the systematic identification of genetic risk

factors for chronic diabetic complications. A collection of patient
samples from a variety of cohorts was analysed by high-throughput
techniques, for example, genotyping, and both patient samples and
genotypes were harnessed for biomarker discovery. The data provided
by consortium participants were either the actual measured data values
or values indicating availability (if a value exists for a given phenotype
and individual then 1, otherwise 0). Users are thus able to query SAIL
to obtain estimates of how many individuals fulfill certain criteria, for
example, to select the most informative individuals within SUMMIT
for GWAS genotyping and omics analysis. Examples of use cases
include:

� For how many T2D patients older than 35 years with myocardial
infarction would there be DNA samples available?

� How many non-diabetic individuals of female gender, age 18–45
years, would have pre-existing GWAS data?

� For how many T2D patients is there data available on the status of
proliferative retinopathy or maculopathy?

In the first stage of applying the SAIL method, it was necessary to
estimate informative and available data that users should be able to
query. This process required fluent interaction between the data
manager, system administrator and researcher (consortium user).
Based on the collected information, a pre-configuration set was
developed and the vocabulary was sent for revision to a test user
who helped finalise the variable definitions (Supplementary S3).

DISCUSSION

The lack of a comprehensive methodology for linking information
across data providers reduces the ability of researchers to combine data
from disparate sources. The SAIL method is the first to formalise and
test a methodological framework for interlinking informative records
from a variety of biomedical archives: biobanks, health registries and
various studies. Originally developed to collect sample availability
information for the ENGAGE consortium, the SAIL method has since
been applied and evaluated in several other projects. The three
applications of the SAIL method described herein demonstrate the
method’s generality: the ENGAGE case showed how SAIL is capable of
interlinking hundreds of thousands of samples in a public SAIL
instance, whereas the SUMMIT instance showed the feasibility of the
method for a completely different endpoint that had more restrictive
security demands and was set up within a secure network. The

Table 3 Data contributors and institutions participated in mapping activities and data submission for the ENGAGE application harmonised with

the SAIL method

Collection(s) Representing organisation

MolOBB Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford OX3 7LJ, UK

NFBC66, Genmets case, Genmets control FIMM, THL and University of Helsinki, Biomedicum Helsinki 2U, 00014 Helsinki, Finland

UK-twin King’s College London, UK

ERF Department of Epidemiology and Biostatistics, Erasmus University Medical School, 3000 DR Rotterdam, The Netherlands

DGI Lund University Diabetes Centre, Malmö, Sweden

EGCUT The Estonian Genome Center of University of Tartu

KORAF3, KORAF4 Helmholtz Zentrum München German Research Center for Environmental Health (GmbH)

STR Karolinska Institutet (Karolinska)

Additonal submissions
HUNT1, HUNT2, HUNT3 HUNT Research Centre, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Latvian Genome Data Base (LGDB) Genome Centre, Latvian Biomedical Reserch and Study centre, Ratsupites 1, Riga LV-1067, Latvia

Abbreviations: ENGAGE, European Network for Genetic and Genomic Epidemiology; SAIL, sample availability.
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application in which SAIL was used to integrate biobank data with a
clinical cancer registry in Sweden illustrates the potential for the SAIL
method to go beyond biobank data integration and opens up
opportunities for new types of translational studies, such as including
genotype data when estimating treatment success. Indexing availability
data without collecting the actual data values has in this case been of
great importance to gain acceptance among data providers. As health
registries and biobanks traditionally are geographically as well as
operationally separated, adoption of SAIL can enhance biobank
research by linking data from diverse sources. SAIL has no built-in
restriction on the nature of the data stored, and in this case the data
items that usually describe biospecimen samples in the context of
biobanks are represented by data describing patients.
It should be noted that the SAIL method does not resolve privacy

issues but rather permits researchers to sidestep privacy-related
obstacles and procedures in the planning phase, which for large
projects may represent a significant time-saving due to unnecessary
data access requests for biobanks that do not contain relevant data.
In the later phase of the project, when the real data are to be
exchanged and the application for the data access is to be filed, the
procedural constraints involved in full data access applications are
unavoidable. The amount of work the researchers put towards an
appropriate project plan should not be underestimated. The SAIL
method simplifies obtaining accurate availability information, which
may significantly reduce time and effort required for filing and
processing the required data access requests. The three case studies
presented here show the method’s applicability in both public and
private settings with restricted access, and the vocabularies and
mappings developed for these projects can also be used in future studies.
The SAIL method requires all participating collections to provide

specific information about each variable: what is measured, how the
measurement was performed, who performed the measurement and
what were the accompanying factors, for example, ‘fasting’. This level
of detail allows comparison of what was measured in research projects
and enables decisions on whether variables can be considered to be
equivalent for a certain analysis or could potentially be brought to an
equivalent status by some transformation (for example, (N smoked
cigarettes per day)× 7=N smoked cigarettes per week). When
variables are fully equivalent, they can be related to each other as
‘full synonyms’. If one is a subcase of another, they can be marked as
parent and child. If variables are related, but are neither of the above,
they are flagged as a partial match. Relating variables recorded at the
time of collection to the variables requested by researchers conducting
a cross-cohort project as accurately as possible and preserving such
mappings has two significant implications for everyday work of
researchers at biobanks and in genomics centres. First, it helps to
annotate samples in a harmonised/consistent manner, which had
originally been described differently, thus making data available for
federated queries. Second, it helps to avoid re-mapping the same
variables between collections repetitively, for example, for various
omics consortia.
The complementing SAIL software was the first system to provide

online searching for sample availability in meta-analysis of human
cohorts. It is also the only resource to provide cross-biobank sample
availability for the cohorts that contributed to the ENGAGE con-
sortium. We do not regard the SAIL software as the only viable
software solution for this method; in fact, we would like to encourage
the research community to develop other suitable software solutions.
A major motivation for an online availability system is the increased
sample visibility it gives, which could result in greater opportunities to
highlight the scientific value of biobank content, for example,

identifying samples that have been used in many studies or those
that have rare phenotypes or data associated with them.
The more collaborations a biobank establishes, the higher the

volume of requests for harmonisation. The processing of requests
involves local epidemiology and informatics expertise, and each
request is slightly different, even when requests concern the same
variables. The SAIL method is capable of indexing the information
about underlying medical protocols, questionnaires and contexts of
meta-projects. In addition, the method captures the details of mapping
between variables and thus allows tracking and re-using the same
mappings in future studies.
In addition to harmonised variables, collaborative studies also

require understanding the designs used to collect the data in the
individual studies. Accounting for the different study designs in the
analysis is especially important if the objective is to estimate popula-
tion statistics, absolute risks or causal effects. As the commonly used
design names, such as cohort study, case–control study or case–cohort
study, are ambiguous by themselves24,25, the verbal definitions can be
complemented with more systematic ways to describe the design.26

This remains as a potential direction of future development for the
SAIL method.
The main limitation of the approach we have presented, not

uncommon among harmonisation solutions in biomedical infor-
matics, is the lack of an interface with other approaches. When it
comes to data management, many tools, approaches and practices
solve one particular problem well, whereas for researchers it is vital to
have a comprehensive solution for a complete range of data annota-
tion and processing problems. For instance, the DataSHaPER platform
and SAIL have partial overlap in functionality and methodology for
harmonisation of data schemas, but some aspects of the process are
different: central curation vs distributed curation, that is, how much
the data schema is governed by curators working within the platform
and how much is in the hands of submitters. It is crucial for the data
providers to be fully aware which scenarios of metadata and
availability data submission are supported by which platform, in order
to make informed choices of harmonisation tools. Interoperability
between stand-alone data harmonisation platforms and frameworks is
yet to be developed and is being targeted by large consortia such as
ELIXIR (http://www.elixir-europe.org) and BBMRI-ERIC (http://
bbmri-eric.eu). We also acknowledge that generic evaluation mechan-
isms for interoperability projects and methodologies are urgently
needed, but this topic is not directly addressed in this study. Our
future work will aim to address this, using action design research and
building on best practices from business sciences for this purpose.
Much of the success of SAIL depends on harnessing ongoing

community efforts to build biomedical ontologies and vocabularies.
Annotation with community-wide ontologies allows integrated
searches to be performed across disparate data sources and maximises
visibility for both primary data and research results. Through its
formalism, the SAIL method empowers consortia, collaborative
initiatives and individual biobanks to interlink existing and future
data across various biomedical research and healthcare digital collec-
tions. The features of SAIL thereby greatly enhance the efficiency of
translational and multi-disciplinary research efforts.
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