21 research outputs found

    SinDiffusion: Learning a Diffusion Model from a Single Natural Image

    Full text link
    We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image. SinDiffusion significantly improves the quality and diversity of generated samples compared with existing GAN-based approaches. It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales which serves as the default setting in prior work. This avoids the accumulation of errors, which cause characteristic artifacts in generated results. Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics, therefore we redesign the network structure of the diffusion model. Coupling these two designs enables us to generate photorealistic and diverse images from a single image. Furthermore, SinDiffusion can be applied to various applications, i.e., text-guided image generation, and image outpainting, due to the inherent capability of diffusion models. Extensive experiments on a wide range of images demonstrate the superiority of our proposed method for modeling the patch distribution

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Genome-wide analysis of microRNA responses to the phytohormone abscisic acid in Populus euphratica

    Get PDF
    MicroRNA (miRNA) is a type of noncoding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA* sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries

    Genome-Wide Analysis of Multiple Organellar RNA Editing Factor Family in Poplar Reveals Evolution and Roles in Drought Stress

    No full text
    Poplar (Populus) is one of the most important woody plants worldwide. Drought, a primary abiotic stress, seriously affects poplar growth and development. Multiple organellar RNA editing factor (MORF) genes—pivotal factors in the RNA editosome in Arabidopsis thaliana—are indispensable for the regulation of various physiological processes, including organelle C-to-U RNA editing and plasmid development, as well as in the response to stresses. Although the poplar genome sequence has been released, little is known about MORF genes in poplar, especially those involved in the response to drought stress at the genome-wide level. In this study, we identified nine MORF genes in the Populus genome. Based on the structural features of MORF proteins and the topology of the phylogenetic tree, the P. trichocarpa (Ptr) MORF family members were classified into six groups (Groups I–VI). A microsynteny analysis indicated that two (22.2%) PtrMORF genes were tandemly duplicated and seven genes (77.8%) were segmentally duplicated. Based on the dN/dS ratios, purifying selection likely played a major role in the evolution of this family and contributed to functional divergence among PtrMORF genes. Moreover, analysis of qRT-PCR data revealed that PtrMORFs exhibited tissue- and treatment-specific expression patterns. PtrMORF genes in all group were involved in the stress response. These results provide a solid foundation for further analyses of the functions and molecular evolution of MORF genes in poplar, and, in particular, for improving the drought resistance of poplar by genetics manipulation

    Establishment and quality evaluation of a glioma biobank in Beijing Tiantan Hospital

    No full text
    Background We established a glioma biobank at Beijing Tiantan Hospital in November, 2010. Specialized residents have been trained to collect, store and manage the biobank in accordance with standard operating procedures. Methods One hundred samples were selected to evaluate the quality of glioma samples stored in the liquid nitrogen tank during different periods (from 2011 to 2015) by morphological examination, RNA integrity determination, DNA integrity determination and housekeeping gene expression determination. Results The majority of samples (95%) had high RNA quality for further analysis with RIN ≥6. Quality of DNA of all samples were stable without significant degradation. Conclusion Storage conditions of our biobank are suitable for long-term (at least five years) sample preservation with high molecular quality
    corecore