1,551 research outputs found
A Model-Based Analysis of GC-Biased Gene Conversion in the Human and Chimpanzee Genomes
GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available. © 2013 Capra et al
A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector
We describe a search method for fast moving ()
magnetic monopoles using simultaneously the scintillator, streamer tube and
track-etch subdetectors of the MACRO apparatus. The first two subdetectors are
used primarily for the identification of candidates while the track-etch one is
used as the final tool for their rejection or confirmation. Using this
technique, a first sample of more than two years of data has been analyzed
without any evidence of a magnetic monopole. We set a 90% CL upper limit to the
local monopole flux of in the
velocity range and for nucleon decay
catalysis cross section smaller than .Comment: 29 pages (12 figures). Accepted by Astroparticle Physic
Nuclearite search with the MACRO detector at Gran Sasso
In this paper we present the results of a search for nuclearites in the
penetrating cosmic radiation using the scintillator and track-etch subdetectors
of the MACRO apparatus. The analyses cover the beta =v/c range at the detector
depth (3700 hg/cm^2) 10^-5 < beta < 1; for beta = 2 x 10^-3 the flux limit is
2.7 x 10^-16 cm^-2 s^-1 sr^-1 for an isotropic flux of nuclearites, and twice
this value for a flux of downgoing nuclearites.Comment: 16 pages, 4 Encapsulated Postscript figures, uses article.sty.
Submitted to The European Physical Journal
New MACRO results on atmospheric neutrino oscillations
The final results of the MACRO experiment on atmospheric neutrino
oscillations are presented and discussed. The data concern different event
topologies with average neutrino energies of ~3 and ~50 GeV. Multiple Coulomb
Scattering of the high energy muons in absorbers was used to estimate the
neutrino energy of each event. The angular distributions, the L/E_nu
distribution, the particle ratios and the absolute fluxes all favour nu_mu -->
nu_tau oscillations with maximal mixing and Delta m^2 =0.0023 eV^2. A
discussion is made on the Monte Carlos used for the atmospheric neutrino flux.
Some results on neutrino astrophysics are also briefly discussed.Comment: Invited Paper at the NANP03 Int. Conf., Dubna, 200
Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Vranych, Cecilia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentin
The Observation of Up-going Charged Particles Produced by High Energy Muons in Underground Detectors
An experimental study of the production of up-going charged particles in
inelastic interactions of down-going underground muons is reported, using data
obtained from the MACRO detector at the Gran Sasso Laboratory. In a sample of
12.2 10^6 single muons, corresponding to a detector livetime of 1.55 y, 243
events are observed having an up-going particle associated with a down-going
muon. These events are analysed to determine the range and emission angle
distributions of the up-going particle, corrected for detection and
reconstruction efficiency. Measurements of the muon neutrino flux by
underground detectors are often based on the observation of through-going and
stopping muons produced in interactions in the rock below the
detector. Up-going particles produced by an undetected down-going muon are a
potential background source in these measurements. The implications of this
background for neutrino studies using MACRO are discussed.Comment: 18 pages, 9 figures. Accepted by Astrop. Physic
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
Final results of magnetic monopole searches with the MACRO experiment
We present the final results obtained by the MACRO experiment in the search
for GUT magnetic monopoles in the penetrating cosmic radiation, for the range
. Several searches with all the MACRO sub-detectors
(i.e. scintillation counters, limited streamer tubes and nuclear track
detectors) were performed, both in stand alone and combined ways. No candidates
were detected and a 90% Confidence Level (C.L.) upper limit to the local
magnetic monopole flux was set at the level of cm
s sr. This result is the first experimental limit obtained in
direct searches which is well below the Parker bound in the whole range
in which GUT magnetic monopoles are expected.Comment: 12 pages, Latex, 9 figures and 2 Table
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
- …
