1,100 research outputs found

    Radio emission and jets from microquasars

    Full text link
    To some extent, all Galactic binary systems hosting a compact object are potential `microquasars', so much as all galactic nuclei may have been quasars, once upon a time. The necessary ingredients for a compact object of stellar mass to qualify as a microquasar seem to be: accretion, rotation and magnetic field. The presence of a black hole may help, but is not strictly required, since neutron star X-ray binaries and dwarf novae can be powerful jet sources as well. The above issues are broadly discussed throughout this Chapter, with a a rather trivial question in mind: why do we care? In other words: are jets a negligible phenomenon in terms of accretion power, or do they contribute significantly to dissipating gravitational potential energy? How do they influence their surroundings? The latter point is especially relevant in a broader context, as there is mounting evidence that outflows powered by super-massive black holes in external galaxies may play a crucial role in regulating the evolution of cosmic structures. Microquasars can also be thought of as a form of quasars for the impatient: what makes them appealing, despite their low number statistics with respect to quasars, are the fast variability time-scales. In the first approximation, the physics of the jet-accretion coupling in the innermost regions should be set by the mass/size of the accretor: stellar mass objects vary on 10^5-10^8 times shorter time-scales, making it possible to study variable accretion modes and related ejection phenomena over average Ph.D. time-scales. [Abridged]Comment: 28 pages, 13 figures, To appear in Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009

    Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields

    Full text link
    We construct an explicit solution of the Cauchy initial value problem for the time-dependent Schroedinger equation for a charged particle with a spin moving in a uniform magnetic field and a perpendicular electric field varying with time. The corresponding Green function (propagator) is given in terms of elementary functions and certain integrals of the fields with a characteristic function, which should be found as an analytic or numerical solution of the equation of motion for the classical oscillator with a time-dependent frequency. We discuss a particular solution of a related nonlinear Schroedinger equation and some special and limiting cases are outlined.Comment: 17 pages, no figure

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    Complex relationships among personality traits, job characteristics, and work behaviors

    Get PDF
    The aim of the study was to investigate the additive, mediating, and moderating effects of personality traits and job characteristics on work behaviors. Job applicants (N = 161) completed personality questionnaires measuring extraversion, neuroticism, achievement motivation, and experience seeking. One and a half years later, supervisors rated the applicants' job performance, and the job incumbents completed questionnaires about skill variety, autonomy, and feedback, work stress, job satisfaction, work self-efficacy, and propensity to leave. LISREL was used to test 15 hypotheses. Perceived feedback mediated the relationship between achievement motivation and job performance. Extraversion predicted work self-efficacy and job satisfaction. Work stress mediated the relationship between neuroticism and job satisfaction. Job satisfaction and experience seeking were related to propensity to leave. Autonomy, skill variety, and feedback were related to job satisfaction

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore