To some extent, all Galactic binary systems hosting a compact object are
potential `microquasars', so much as all galactic nuclei may have been quasars,
once upon a time. The necessary ingredients for a compact object of stellar
mass to qualify as a microquasar seem to be: accretion, rotation and magnetic
field. The presence of a black hole may help, but is not strictly required,
since neutron star X-ray binaries and dwarf novae can be powerful jet sources
as well. The above issues are broadly discussed throughout this Chapter, with a
a rather trivial question in mind: why do we care? In other words: are jets a
negligible phenomenon in terms of accretion power, or do they contribute
significantly to dissipating gravitational potential energy? How do they
influence their surroundings? The latter point is especially relevant in a
broader context, as there is mounting evidence that outflows powered by
super-massive black holes in external galaxies may play a crucial role in
regulating the evolution of cosmic structures. Microquasars can also be thought
of as a form of quasars for the impatient: what makes them appealing, despite
their low number statistics with respect to quasars, are the fast variability
time-scales. In the first approximation, the physics of the jet-accretion
coupling in the innermost regions should be set by the mass/size of the
accretor: stellar mass objects vary on 10^5-10^8 times shorter time-scales,
making it possible to study variable accretion modes and related ejection
phenomena over average Ph.D. time-scales. [Abridged]Comment: 28 pages, 13 figures, To appear in Belloni, T. (ed.): The Jet
Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009