585 research outputs found

    Calcium sulfate ameliorates the effect of aluminum toxicity differentially in genotypes of highbush blueberry (Vaccinium corymbosum L.)

    Get PDF
    The effect of gypsum (CaSO 4) amendment in the reduction of Al phytotoxicity of blueberry cultivars differing in Al resistance (Legacy and Brigitta, Al-resistant and Bluegold, Al-sensitive) was studied in a Hoagland's nutrient solution under acidic conditions for 2 weeks. Treatments were: Control (Hoagland solution), 2.5 mM CaSO 4, 5 mM CaSO 4, 100 μM Al (AlCl 3), 100 μM Al + 2.5 μM CaSO 4, 100 M Al + 5 mM CaSO 4. Physiological, biochemical and chemical features of leaves and roots were determined to establish the amendment efficiency in the reduction of Al toxicity in these cultivars. Results showed that under Al toxicity the three investigated cultivars accumulated high Al concentrations in leaves and roots. These concentrations decreased with CaSO 4 application. Statistically significant interactions among Al in leaves but not in roots (p=0.719) and cultivars (p<0.001), were found. The lowest Ca concentration was found in the most Al-sensitive cultivar (Bluegold) and the highest in the more Al-resistant cultivars (Legacy and Brigitta). Among the underlying processes affected by Al stress in these blueberry cultivars the most evident changes were exhibited by the Al-sensitive cultivar Bluegold, where the photosynthetic performance decreased showing a slight recovery in presence of gypsum amendment at the end of experiment. Instead, the more Al-resistant cultivar (Legacy) did not change its photosynthetic parameters in presence of the gypsum amendments during the treatment, whereas in Brigitta, only a slight recovery at the end of treatment was evidenced by the gypsum application. Thus, in relation to these parameters the gypsum amendment was efficient in complete recovery from the toxic Al effect in the Al-resistant cultivar Brigitta and a slight recovery of the toxic Al effect in the Al-sensitive cultivar Bluegold. Nonetheless, this amendment is a good alternative to ameliorate Al toxicity in Al-sensitive cultivars and additionally provides a good source of Ca and S

    Anisotropic electrical and thermal magnetotransport in the magnetic semimetal GdPtBi

    Full text link
    The half-Heusler rare-earth intermetallic GdPtBi has recently gained attention due to peculiar magnetotransport phenomena that have been associated with the possible existence of Weyl fermions, thought to arise from the crossings of spin-split conduction and valence bands. On the other hand, similar magnetotransport phenomena observed in other rare-earth intermetallics have often been attributed to the interaction of itinerant carriers with localized magnetic moments stemming from the 4f4f-shell of the rare-earth element. In order to address the origin of the magnetotransport phenomena in GdPtBi, we performed a comprehensive study of the magnetization, electrical and thermal magnetoresistivity on two single-crystalline GdPtBi samples. In addition, we performed an analysis of the Fermi surface via Shubnikov-de Haas oscillations in one of the samples and compared the results to \emph{ab initio} band structure calculations. Our findings indicate that the electrical and thermal magnetotransport in GdPtBi cannot be solely explained by Weyl physics and is strongly influenced by the interaction of both itinerant charge carriers and phonons with localized magnetic Gd-ions and possibly also paramagnetic impurities.Comment: 11 figure

    Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.)

    Get PDF
    Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al3+, La3+, Sr2+, and Rb+ binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al3+ compared with other cations (Al3+ >> La3+ > Sr2+ > Rb+). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast

    Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris)

    Get PDF
    Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al–drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (–0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought

    New highly-anisotropic Rh-based Heusler compound for magnetic recording

    Get PDF
    The development of high-density magnetic recording media is limited by the superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat assisted magnetic recording (HAMR) has been developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc, coupled with anisotropic thermal conductivity and hard magnetic properties. Here we introduce Rh2CoSb as a new hard magnet with potential for thin film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJm-3 is combined with a saturation magnetization of {\mu}0Ms = 0.52 T at 2 K (2.2 MJm-3 and 0.44 T at room-temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 {\mu}B on Co, which is hybridized with neighbouring Rh atoms with a large spin-orbit interaction. Moreover, the pronounced temperature-dependence of the anisotropy that follows from its Tc of 450 K, together with a high thermal conductivity of 20 Wm-1K-1, makes Rh2CoSb a candidate for development for heat assisted writing with a recording density in excess of 10 Tb/in2

    Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1

    Get PDF
    Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe
    corecore