6 research outputs found

    Modeling protein network evolution under genome duplication and domain shuffling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such <it>exponential </it>evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI) networks by outweighing, in particular, all <it>time-linear </it>network growths modeled so far.</p> <p>Results</p> <p>We propose and solve a mathematical model of PPI network evolution under successive genome duplications. This demonstrates, from first principles, that evolutionary conservation and scale-free topology are intrinsically linked properties of PPI networks and emerge from <it>i) </it>prevailing <it>exponential </it>network dynamics under duplication and <it>ii) asymmetric divergence </it>of gene duplicates. While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein domains under exponential and asymmetric duplication/divergence dynamics, with multidomain proteins underlying the combinatorial formation of protein complexes. Genome duplication then provides a powerful source of PPI network innovation by promoting local rearrangements of multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well as to finer details of protein interaction and evolution. Finally, large scale features of <it>direct </it>and <it>indirect </it>PPI networks of <it>S. cerevisiae </it>are well reproduced numerically with only two adjusted parameters of clear biological significance (<it>i.e</it>. network effective growth rate and average number of protein-binding domains per protein).</p> <p>Conclusion</p> <p>This study demonstrates the statistical consequences of genome duplication and domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale across eukaryote kingdoms. In particular, scale-free topologies of PPI networks, which are found to be robust to extensive shuffling of protein domains, appear to be a simple consequence of the conservation of protein-binding domains under asymmetric duplication/divergence dynamics in the course of evolution.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Design optimisation of a reconfigurable perching element for vertical take-off and landing unmanned aerial vehicles

    No full text
    Vertical Take-off and Landing (VTOL) multi-rotor rotary-wing vehicles face many challenges such as harsh weather conditions and low endurance which affect their overall performance and usability. The current usage of these types of small Unmanned Aerial Vehicles (sUAVs) has changed to an urban and cluttered environment, which the larger fixed-wing UAVs cannot access and gain the required data. With interesting flight regimes such as perching, small man-portable UAVs have found their way into the military and the ever growing civilian sector. This paper aims to provide a method of setting design parameters for a reconfigurable perching element, which replaces the current landing gear on a VTOL UAV which has a maximum take-off mass (MTOM) of &lt;1.5 kg. These design parameters are used to create concepts along with various different grasping methods to cover the design solution space. A weighted matrix method was applied for the design selection and optimisation process, where carefully selected criteria and weightings were chosen to give the VTOL UAV the ability to perch on top of lighting columns, which are a common form of street furniture found in most urban environments

    Design for Modularity

    No full text
    corecore