20 research outputs found

    The complexity of interacting nutritional drivers behind food selection, a review of northern cervids

    Get PDF
    The research literature on food selection by large herbivores is extensive. Still, we are generally lacking in our knowledge of the influence of potentially interacting chemical contents of the food. We made a qualitative review of a systematic literature search of studies that empirically link chemical contents of food to the food selection by northern cervids (genera Alces, Capreolus, Cervus, Dama, Odocoileus, Rangifer). We found that although the majority of the 98 relevant studies measuring any given food constituent (energy, protein, fiber, minerals, plant secondary metabolites) provided support for it acting as a driver of food selection (in either a negative or positive way), there was little support for the traditional hypotheses of maximization or limitation of any single constituent. Rather, because of the animals’ need to acquire an appropriate intake of several constituents at the same time, our review highlights how new empirical stud- ies need to focus on several food constituents in synchrony: (1) Study designs should capture sufficient variation in the content of food constituents in order to tease apart their many co-variations; and (2) insights about nutritional drivers may be lost if one uses only composite currencies such as crude energy, crude fiber, ash, or tannins, which may mask contrasting selection patterns of the lumped constituents. Season had an apparent influence on the selection of some food constituents, particularly various fiber frac- tions. In contrast, our review revealed a lack of evidence that cervids more strongly select for protein in summer than they do in winter. Our overall conclusion of the review is that interacting chemical contents of food make the nutritional value of a given food type into a varying entity. To better elucidate this varia- tion, we need new technologies that non-invasively capture nutrient intake of free-ranging animals, across seasons.The complexity of interacting nutritional drivers behind food selection, a review of northern cervidspublishedVersio

    Subtle foodscape displacement of a native ungulate by free-ranging livestock in a forest agroecosystem

    Get PDF
    The prevalence of livestock grazing in wildlife area s is increasing. This transformation of ecosys- tems into agroecosystems is concerning because the intr oduction of new species may cause niche displacement of the functionally related native species. We used a la rge-scale fence scheme and f ecal analyses to study the in fl uence of free-ranging livestock on moose diet on thr ee boreal forest ranges. We found low interspeci fi cdiet overlap between moose and livestock (mean Pianka ’ s O across ranges = 0.21, SD = 0.104), and the diet overlap with livestock did not differ between moose in areas with livestock and in adjacent control areas without live- stock. Still, moose sympatric with livestock had less fe cal nitrogen (a proxy for diet quality) than moose in the control areas. Our fi ndings suggest that interspeci fi c interactions other than direct food competition contributed to reduce the moose ’ foraging opportunities, such as altered forag e abundance and composition, or behavioral avoidance of livestock. We caution that displacement in the foodscape (i.e., spati otemporal use of food) can occur through pathways not evident in niche indices based on composition of plant species in the diet.publishedVersio

    The complexity of interacting nutritional drivers behind food selection, a review of northern cervids

    No full text

    Does wolf presence reduce moose browsing intensity in young forest plantations?

    No full text
    Large carnivores can be a key factor in shaping their ungulate prey's behavior, which may affect lower trophic levels. While most studies on trade-offs between food acquisition and risk avoidance by ungulate prey species have been conducted in areas with limited human impact, carnivores are now increasingly returning to highly anthropogenic landscapes. Many of these landscapes are dominated by forestry, and ungulate-forestry conflicts are an increasing issue. The aim of this study was to test if the indirect effects of a re-colonizing large predator, the wolf Canis lupus, results in a change in browsing intensity by moose Alces alces in young forest plantations in a boreal forest in Sweden. We selected 24 different forest plantations, with 12 located in low-wolf and 12 in high-wolf utilization areas. In each plantation, we measured browsing intensity, tree height, tree density, distance to the closest forest edge and we counted the number of moose pellet groups. In contrast to our predictions, wolf utilization was not the main driver of moose browsing patterns. Instead, moose browsing intensity declined with tree density and height. Separate analyses on the main tree species showed that wolf utilization had an influence, but browsing intensity was in fact higher in the high-wolf utilization areas for three out of five tree species. This pattern seemed to be driven by a strong confounding relationship between wolf utilization, tree density and height, which were both lower in the high-wolf utilization areas. We argue that this confounding effect is due to wolves being pushed towards the less productive parts of the landscape away from human activity centers. Therefore, we concluded that in order to better understand carnivore driven risk-mediated effects on herbivore behavior in anthropogenic landscapes we need to better understand the complexity of human-carnivore-prey-ecosystem interactions. Ecograph
    corecore