1,191 research outputs found
The New Urban Revival in the United States
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68657/2/10.1080_00420989320081901.pd
Population Dynamics and Non-Hermitian Localization
We review localization with non-Hermitian time evolution as applied to simple
models of population biology with spatially varying growth profiles and
convection. Convection leads to a constant imaginary vector potential in the
Schroedinger-like operator which appears in linearized growth models. We
illustrate the basic ideas by reviewing how convection affects the evolution of
a population influenced by a simple square well growth profile. Results from
discrete lattice growth models in both one and two dimensions are presented. A
set of similarity transformations which lead to exact results for the spectrum
and winding numbers of eigenfunctions for random growth rates in one dimension
is described in detail. We discuss the influence of boundary conditions, and
argue that periodic boundary conditions lead to results which are in fact
typical of a broad class of growth problems with convection.Comment: 19 pages, 11 figure
Randomly Crosslinked Macromolecular Systems: Vulcanisation Transition to and Properties of the Amorphous Solid State
As Charles Goodyear discovered in 1839, when he first vulcanised rubber, a
macromolecular liquid is transformed into a solid when a sufficient density of
permanent crosslinks is introduced at random. At this continuous equi- librium
phase transition, the liquid state, in which all macromolecules are
delocalised, is transformed into a solid state, in which a nonzero fraction of
macromolecules have spontaneously become localised. This solid state is a most
unusual one: localisation occurs about mean positions that are distributed
homogeneously and randomly, and to an extent that varies randomly from monomer
to monomer. Thus, the solid state emerging at the vulcanisation transition is
an equilibrium amorphous solid state: it is properly viewed as a solid state
that bears the same relationship to the liquid and crystalline states as the
spin glass state of certain magnetic systems bears to the paramagnetic and
ferromagnetic states, in the sense that, like the spin glass state, it is
diagnosed by a subtle order parameter.
In this review we give a detailed exposition of a theoretical approach to the
physical properties of systems of randomly, permanently crosslinked
macromolecules. Our primary focus is on the equilibrium properties of such
systems, especially in the regime of Goodyear's vulcanisation transition.Comment: Review Article, REVTEX, 58 pages, 3 PostScript figure
Heat release by controlled continuous-time Markov jump processes
We derive the equations governing the protocols minimizing the heat released
by a continuous-time Markov jump process on a one-dimensional countable state
space during a transition between assigned initial and final probability
distributions in a finite time horizon. In particular, we identify the
hypotheses on the transition rates under which the optimal control strategy and
the probability distribution of the Markov jump problem obey a system of
differential equations of Hamilton-Bellman-Jacobi-type. As the state-space mesh
tends to zero, these equations converge to those satisfied by the diffusion
process minimizing the heat released in the Langevin formulation of the same
problem. We also show that in full analogy with the continuum case, heat
minimization is equivalent to entropy production minimization. Thus, our
results may be interpreted as a refined version of the second law of
thermodynamics.Comment: final version, section 2.1 revised, 26 pages, 3 figure
Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study
Background:
Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear.
Methods:
We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts.
Findings:
The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies.
Interpretation:
In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established.
Funding:
Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung für Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny
A solution scan of societal options to reduce transmission and spread of respiratory viruses: SARS-CoV-2 as a case study
Societal biosecurity – measures built into everyday society to minimize risks from pests and diseases – is an important aspect of managing epidemics and pandemics. We aimed to identify societal options for reducing the transmission and spread of respiratory viruses. We used SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as a case study to meet the immediate need to manage the COVID-19 pandemic and eventually transition to more normal societal conditions, and to catalog options for managing similar pandemics in the future. We used a ‘solution scanning’ approach. We read the literature; consulted psychology, public health, medical, and solution scanning experts; crowd-sourced options using social media; and collated comments on a preprint. Here, we present a list of 519 possible measures to reduce SARS-CoV-2 transmission and spread. We provide a long list of options for policymakers and businesses to consider when designing biosecurity plans to combat SARS-CoV-2 and similar pathogens in the future. We also developed an online application to help with this process. We encourage testing of actions, documentation of outcomes, revisions to the current list, and the addition of further options.</p
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Detection model based on representation of quantum particles by classical random fields: Born's rule and beyond
Recently a new attempt to go beyond quantum mechanics (QM) was presented in
the form of so called prequantum classical statistical field theory (PCSFT).
Its main experimental prediction is violation of Born's rule which provides
only an approximative description of real probabilities. We expect that it will
be possible to design numerous experiments demonstrating violation of Born's
rule. Moreover, recently the first experimental evidence of violation was found
in the triple slits interference experiment, see \cite{WWW}. Although this
experimental test was motivated by another prequantum model, it can be
definitely considered as at least preliminary confirmation of the main
prediction of PCSFT. In our approach quantum particles are just symbolic
representations of "prequantum random fields," e.g., "electron-field" or
"neutron-field"; photon is associated with classical random electromagnetic
field. Such prequantum fields fluctuate on time and space scales which are
essentially finer than scales of QM, cf. `t Hooft's attempt to go beyond QM
\cite{H1}--\cite{TH2}. In this paper we elaborate a detection model in the
PCSFT-framework. In this model classical random fields (corresponding to
"quantum particles") interact with detectors inducing probabilities which match
with Born's rule only approximately. Thus QM arises from PCSFT as an
approximative theory. New tests of violation of Born's rule are proposed.Comment: Relation with recent experiment on violation of Born's rule in the
triple slit experiment is discussed; new experimental test which might
confirm violation of Born's rule are presented (double stochsticity test and
interference magnitude test); the problem of "double clicks" is discusse
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …