3 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Whole body vibration added to treatment as usual is effective in adolescents with depression: a partly randomized, three-armed clinical trial in inpatients

    No full text
    There is growing evidence for the effectiveness of exercise in the treatment of adult major depression. With regard to adolescents, clinical trials are scarce. Due to the inherent symptoms of depression (lack of energy, low motivation to exercise), endurance training forms could be too demanding especially in the first weeks of treatment. We hypothesized that an easy-to-perform passive muscular training on a whole body vibration (WBV) device has equal anti-depressive effects compared to a cardiovascular training, both administered as add-ons to treatment as usual (TAU). Secondly, we presumed that both exercise interventions would be superior in their response, compared to TAU. In 2 years 64 medication-na < ve depressed inpatients aged 13-18, were included. Both exercise groups fulfilled a supervised vigorous training for 6 weeks. Depressive symptoms were assessed by self-report (Depressions Inventar fur Kinder und Jugendliche-DIKJ) before intervention and after weeks 6, 14 and 26. Compared to TAU, both groups responded earlier and more strongly measured by DIKJ scores, showing a trend for the WBV group after week 6 (p = 0.082). The decrease became statistically significant for both intervention groups after week 26 (p = 0.037 for ergometer and p = 0.042 for WBV). Remission rates amounted to 39.7% after week 6 and 66% after week 26, compared to 25% after week 26 in TAU. These results provide qualified support for the effectiveness of exercise as add-on treatment for medication-na < ve depressed adolescents. The present results are limited by the not randomized control group
    corecore