212 research outputs found

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Revisiting the Bs()B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs()B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+gBs()+b+sˉg+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bˉBs()+sˉg+\bar{b}\to B^{(*)}_s +\bar{s} and g+sBs()+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs()B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs()B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs()B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs()B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.

    Cold Nuclear Matter Effects on Dijet Productions in Relativistic Heavy-ion Reactions at LHC

    Full text link
    We investigate the cold nuclear matter(CNM) effects on dijet productions in high-energy nuclear collisions at LHC with the next-to-leading order perturbative QCD. The nuclear modifications for dijet angular distributions, dijet invariant mass spectra, dijet transverse momentum spectra and dijet momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS, HKN and DS param-etrization sets of parton distributions in nucleus . It is found that dijet angular distributions and dijet momentum imbalance are insensitive to the initial-state CNM effects and thus provide optimal tools to study the final-state hot QGP effects such as jet quenching. On the other hand, the invariant mass spectra and the transverse momentum spectra of dijet are generally enhanced in a wide region of the invariant mass or transverse momentum due to CNM effects with a feature opposite to the expected suppression because of the final-state parton energy loss effect in the QGP. The difference of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution functions is appreciable for dijet invariant mass spectra and transverse momentum spectra at p+Pb collisions, and becomes more pronounced for those at Pb+Pb reactions.Comment: 10 pages, 11 figure

    Study of Inclusive Strange-Baryon Production and Search for Pentaquarks in Two-Photon Collisions at LEP

    Get PDF
    Measurements of inclusive production of the Lambda, Xi- and Xi*(1530) baryons in two-photon collisions with the L3 detector at LEP are presented. The inclusive differential cross sections for Lambda and Xi- are measured as a function of the baryon transverse momentum, pt, and pseudo-rapidity, eta. The mean number of Lambda, Xi- and Xi*(1530) baryons per hadronic two-photon event is determined in the kinematic range 0.4 GeV < pt< 2.5 GeV, |eta| < 1.2. Overall agreement with the theoretical models and Monte Carlo predictions is observed. A search for inclusive production of the pentaquark theta+(1540) in two-photon collisions through the decay theta+ -> proton K0s is also presented. No evidence for production of this state is found

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

    Get PDF
    We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables, final version to appear in Physical Review

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe

    Measurement of tau polarization in W->taunu decays with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    In this paper, a measurement of tau polarization in W->taunu decays is presented. It is measured from the energies of the decay products in hadronic tau decays with a single final state charged particle. The data, corresponding to an integrated luminosity of 24 pb^-1, were collected by the ATLAS experiment at the Large Hadron Collider in 2010. The measured value of the tau polarization is Ptau = -1.06 +/- 0.04 (stat) + 0.05 (syst) - 0.07 (syst), in agreement with the Standard Model prediction, and is consistent with a physically allowed 95% CL interval [-1,-0.91]. Measurements of tau polarization have not previously been made at hadron colliders.Comment: 10 pages plus author list (25 pages total), 4 figures, 4 tables, revised author list, matches published EPJC versio
    corecore