116 research outputs found

    New coupled thermoelectric link finite element for FGM materials

    Get PDF
    The paper deals with derivation process of new FEM equations for steady thermoelectric two-way coupled analysis of link conductor made of Functionally Graded Material (FGM). One example of coupled analysis will be introduced to demonstrate accuracy and effectiveness of our new approach in computer modelling of such systems

    Modal analysis of the fgm beam-like structures with effect of the thermal axial force

    Get PDF
    The modal analysis of the FGM beam-like actuator is presented, where effects of the thermal axial force and the shear force are considered. The temperature load is assumed to be lower as the critical buckling temperature. The longitudinal variation of material properties has been assumed which can be caused by the varying constituent’s volume fraction and the temperature dependence of the constituent’s material properties. Our new FGM beam finite element has been used in the proposed analysis. An influence of the material properties variation and the thermal axial forces on the actuator eigenfrequency and eigenform has been studied and discussed

    Epitaxial growth of biferroic YMnO3(0001) on platinum electrodes

    Get PDF
    Epitaxial films of the biferroic YMnO3 (YMO) oxide have been grown on platinum-coated SrTiO3(1 1 1) and Al2O3(0 0 0 1) substrates. The platinum electrodes, (1 1 1) oriented, are templates for the epitaxy of the hexagonal phase of YMO with a (0 0 0 1) out-of-plane orientation, which is of interest as this is the polarization direction of YMO. X-ray diffractometry indicates the presence of two crystal domains, 60° rotated in-plane, in the Pt(1 1 1) layers which subsequently are transferred on the upperlaying YMO. Cross-section analysis by high-resolution transmission electron microscopy (HRTEM) of YMnO3/Pt/SrTiO3(1 1 1) shows high-quality epitaxy and sharp interfaces across the structure in the observed region. We present a detailed study of the epitaxial growth of the hexagonal YMO on the electrodes

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory

    Get PDF

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF
    corecore