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Abstract. The modal analysis of the FGM beam-like actuator is presented, where effects of 
the thermal axial force and the shear force are considered. The temperature load is assumed to 
be lower as the critical buckling temperature. The longitudinal variation of material properties 
has been assumed which can be caused by the varying constituent’s volume fraction and the 
temperature dependence of the constituent’s material properties. Our new FGM beam finite 
element has been used in the proposed analysis. An influence of the material properties 
variation and the thermal axial forces on the actuator eigenfrequency and eigenform has been 
studied and discussed.

1 INTRODUCTION 
 Mechatronic systems represent complex integrated intelligent systems making use of a 
synergy between information technology, electronics, mechanics, communication and control. 
Mechatronic is one of the most dominant research and application areas in nowadays' 
engineering, consumer electronics and services. For an optimal utilization of their enormous 
potential it is necessary to examine, analyze, model, control and optimize their structure and 
parameters for a wide range of applications. Development of dominant mechatronic parts like 
sensors and actuators still continues and is strongly dependant on the design of new materials 
and applications of modern approaches from the information, communication and control 
technologies. 
Mechatronic systems work in the multi-physical domains. Based on the types of interaction 
they are divided into thermal-mechanical, electro-thermal, electro-magneto-mechanical, 
piezoelectric and fluid-structural systems. The modelling and control of these complex 
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systems requires a continuous research and development of new and effective numerical 
techniques. The most widely used numerical methods in this area are the finite element 
method (FEM), finite volume method (FVM) and meshless methods. Besides the multi-
physical domain character, progress in material engineering also plays a crucial role in the 
mechatronic systems design. It is, in particular, the ability to precisely define local material 
properties - functionally graded material (FGM) or change properties according to a 
controlling parameter (usually temperature) - shape memory alloys (SMA). However, the 
most important part in the mechatronic system design is their modelling and simulation. 
 The variation of FGM's material properties can be achieved via a controlled uneven mixing 
of two or more components e.g. using powder metallurgy, plasma spray applications, etc. or 
by a change of components' material properties through temperature. Such a material has 
much better efficiency than its components. Problems that occur at layer-interfaces of 
classical multi-layer composites are circumventing [1-3]. For these reasons it is of great 
interest to implement such new materials in the design of mechatronic parts, especially in the 
case of small dimensions where it is impossible to change mechanical and other physical 
attributes through a change in cross-section or complicated geometry (elastic joints, stiffness 
and dynamics properties etc.). A more intelligent and sophisticated function is reached with 
the implementation of composites made of FGMs. It is inevitable to create new advanced 
models and finite elements for their precise and effective multiphysical analyses [4], [7]. A 
number of international and domestic conference contributions emphasize this necessity [8], 
[9], [10].  
Many papers dealing with modal analysis of single FGM beams can be found in literature, 
e.g. [11], [12], [13]. Mostly transversal variation of material properties has been considered. 
In papers [14], [15], spatial variation of material properties has been assumed. In [16], new 
2D beam finite element has been established, which can be used in modal analysis of the 
beams made of FGM with transversal and longitudinal variation of macroscopic material 
properties. Effects of the internal axial force, shear force and elastic foundation have been 
taken into account. 
In the contribution, which is an extension of the work [16], the new beam finite element will 
be used in modal analysis of the actuator which is built of FGM beams with longitudinal 
variation of material properties. The effects of the material properties variation and thermal 
axial force on the eigenfrequency and eigenform will be studied. 

2 DESCRIPTION OF THE 2D FGM BEAM FINITE ELEMENT 

 This chapter is focused on description of the 2D FGM beam finite element, which is based 
on differential FGM beam equations of transversal and axial vibration. All quantities in 
following equations are the polynomial functions of x. Homogenization process of the varying 
material properties and the calculation of other effective finite element parameters is fully 
described in [14]. 
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2.1 Transversal free vibration 
The main equations of the 2nd order beam theory containing the inertia effects (according 

to the Figure 1) are: 

' µω= − + − 2R q kw w   (1) 
' µω ϕ= + + 2M Q m  (2) 

' 'e eM
M EI EI

EI
ϕ κ ϕ κ= − − ⇒ = − −   (3) 

' ϕ ϕ′= + ⇒ = − 


Q
w Q GAw GA

GA
  (4) 

 Eqs. (1) and (2) present the equilibrium equations for bending in the deformed 
configuration. Eqs. (3) and (4) are the constitutive relations of the 2nd order beam theory. 
 Here q is the distributed transversal load ; m is the distributed bending moment; κ e denotes 
any applied beam curvature and k is the modulus of elastic Winkler foundation. Further, 

AxA H
L )(ρρµ == denotes the mass distribution; IxI H

L )(ρρµ == is the mass inertial moment 
distribution, where )(xH

Lρ is the homogenized mass density distribution. ω  is the natural 
eigenfrequency; R is the transversal force; Q is the shear force; M is the bending moment. The 
angle of cross-section rotation is ϕ ; w is the beam’s  transverse 
displacement; ( )IxEEIB MH

L== is the homogenized bending stiffness and 
( ) ( )AxkxGAG sH

L=~  is the reduced homogenized shear stiffness. I is the moment of inertia, 
A is the cross-section area, ( )xE MH

L , ( )xE NH
L and ( )xG H

L is the homogenized elasticity 
modulus for bending, axial and shear loading, respectivelly. The calculation of the shear 
correction function ( )xk s  is presented in [15]. The first derivative with respect to x is denoted 
by superscript ( ' ). 

dx

N
M

R

R + dR

N + dN

M + dM

q

m

(k − µω2
)w

n

(kx − µω2
) u

kw
′

µω2ϕ

Figure 1: The force equilibrium in the deformed element configuration 

1385



J. Murin, M. Aminbaghai, J. Hrabovsky, V. Kutiš, J. Paulech 

4

The relation between the transversal R and shear Q force is: 

( ) ' ψ= − + − +II IIQ k N w N R   (5) 

where NN II ≡  is the resultant axial force of the 2nd order beam theory (it has to be known 
and is caused by thermal loads in our case), ψ  is the beam rotation imperfection, and          
k = ( )xk  is the elastic foundation modulus for the beam rotation. 
Setting the expression (5) into the equations (1) – (4) we get: 

( ) 'µω − + = −2 k w R q  (6) 
' ( ) 'µω ϕ+ − − = −2 GAw GA M m   (7) 

'ϕ κ+ = − eEI M EI  (8) 
( ) ϕ ψ′+ + − − = − II IIk N GA w GA R N   (9) 

We get four coupled differential equations which can be solved (after common boundary 
conditions consideration) for the transfer functions: ( ) ( ) ( )xMMxxww === ,, ϕϕ  and 

( )xRR = . 
In the modal transversal vibration analysis the right side of the equations (6) – (9) is equal 

to zero. In the finite element derivation the reduced shear stiffness was simplified: 
( ) AkxGAGAG smH

L=≅~ , where instead the shear correction function ( )xk s  [15] its average 

value ( )dxxk
L

k
L

ssm ∫=
0

1  have been applied (calculation of the average shear correction factor 

is described in [15]); 
After some mathematical operations only one homogeneous differential equation of the 4th

order of the homogenized FGM beam deflection with non-constant coefficients has been 
obtained  

001234 =+′+′′+′′′+′′′′ wwwww ηηηηη  (10) 

The non-constant coefficients 0η  to 4η and appropriated parameters of the differential 
equation (10) are described in [14] in detail. 
If the variation of all beam parameters is polynomial, the solution of this differential equation 
has a form [17] 
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where functions jb , jb′ , jb ′′  and jb ′′′ , ( 3,0∈j )  are the solution functions of the differential 
equation (10) and are called transfer functions. The dependence of the ( )xww ′=′ , ( )xww ′′=′′
and ( )xww ′′′=′′′  on the ( ) ( )xMMx == ,ϕϕ  and ( )xRR =  is described in [14] from which the 
transfer matrix expression has been obtained:  
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The kinematical and kinetic variables at node i are denoted by index “i” in (12). By setting 
Lx =  in (12) the dependence of the nodal variables at node k on the nodal variables at node i

will be obtained (see Figure 2). 

2.1 Axial free vibration 
 The equilibrium equation for the axial vibration (according to Figure 1) and the 
constitutive equation of the FGM beam are: 

' ( )µω= + − 2
xN n k u  (13) 

e

EA

N
u ε+=′  (14) 

Here, n is the axial distributed load; N and N ′  denote the axial force and its first derivative 
respectively. The modulus of elastic foundation in the axial direction is ( )xkk xx = ; ( )xuu =
and u′  refer to the axial displacement and its first derivative. eε  is the axial applayed strain. 

( )AxEEA NH
L=  is the homogenized beam stiffness in axial direction, and ω is the natural 

frequency. 
By combination of the equations (13) and (14) we get the differential equation 

nuuu =+′+′′ 012 ηηη   (15) 

with non-constant polynomial coefficients: xkAEEA −=′== 2
012 ,, µωηηη . In the modal 

axial vibration analysis the right side of the equation (15) is equal to zero. The solution of the 
differential equation (15) for 0=n  can be expressed by transfer functions jb and has the 
form: 
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The jb - functions ( 1,0∈j ) are the solution functions of the differential equation (15). If the 
( )xu′  and ( )xu  are replaced with the expression (14), we get: 
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By setting Lx =  in (17) the dependence of the nodal variables at node k on the nodal 
variables at node i will be obtained (see Figure 2). The transfer functions become the transfer 
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constants which can be calculated by a simple numerical algorithm [17]. iE is the initial value 
of the homogenized elasticity modulus ( )xENH

L  at node i. 

2.1 Finite element matrix derivation 
Figure 2 shows two nodal finite element with 6 degrees of freedom. 

E
L

NH
( )x E

L

MH
( )x G

L

H
( )x �

TL

H
( )x �

L

H
( )x, , , ,

x

M,�

R,wR ,wi i

k

R  ,wk k

M  ,�k kM  ,�i i

N ,ui i i

x

N,u N ,uk k

L

y
, N

II
, A, I

Figure 2: FGM beam finite element 

The finite element equation in local coordinate system x, y (18) has been obtained by 
combination of the equations (12) and (17) and it has a form:  
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The non-constant terms jiB , (functions of x
smII kkkN ,,,,ω and other beam parameters) of 

the symmetric local finite element matrix e
locB  are not expressed in detail here from space 

spending point of view. Those are calculated numerically. e
locF and e

locU  is the vector of the 
local element forces and vector of the local element displacements, respectively.  

The global finite element matrix e
globB is obtained by usual transformation of the local 

matrix e
locB , ee

loc

Tee
glob TBTB = . eT is the well known transformation matrix, TeT is its 

transposed form.  The global finite element equation reads
e
glob

e
glob

e
glob UBF =  (19) 

where e
globF and e

globU  is the vector of global forces and vector of the global displacements, 
respectively. Finally, the algebraic system of equations of whole beam structure will be 
established by a usual way.
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The beam structure natural eigenfrequency Kiω  (for the calculated thermal forces IIN in 
the finite element) has been iterative calculated by software MATEMATICA [18]. The 
natural eigenfrequency ω  will be increased until all the boundary conditions have been 
fulfilled. In this state, the natural frequency ω  responds to the i-th natural 
eigenfrequency Kiω . As the natural eigenfrequency is known, the eigenfrequency and 
corresponding eigenmode can be calculated by a usual way. 

3 NUMERICAL EXPERIMENTS 
The actuator (Figure 3) is loaded with thermal load caused by Joule heat. Undeformed and 

deformed form of the actuator is shown in the Figure 3a. Thermoelastic deformation induces 
the vertical displacement δ or the action force in the point m. Maximal action force arises 
when displacements at this point are restrained (Figure 3b). The design of actuator requires 
not only electro-thermo-structural analysis but also modal analysis. For its performation, 
mechanical model of beam structure according to Figure 3b have been considered. Three 
different analyses depending on the type of material have been analysed in order to find its 
influence on eigenfrequencies of the system. In the first two analyses actuator is the made 
from one chosen component, in the third one it is made by mixing of two components.  

The actuator has been considered as the beam structure (shown in Figure 3b). It consists of 
7 parts - beams. Their square cross-section is constant m10== hb . Lengths of the parts 
are: m300=iL , 71−=i . The angles 1α  and 2α  are: °= 701α , °= 202α .  

X
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5L 7L
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n

p

j
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l
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b

h
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a) b)

h

i

m

X

Y

2L 3L

m
�

j

k

i

r

n

p

l

l

Figure 3: The geometry of the actuator 

3.1 Case I – actuator with constant material properties 
 In this case two analyses have been made. Firstly, the actuator has been made only from 
aluminum Al6061-TO with constant material properties: the elasticity modulus 0.69=E GPa, 
the mass density 2700=ρ kgm-3, the Poisson’s ratio 33.0=ν , the coefficient of thermal 
expansion 6105.23 −×=Tα K-1. In the next analysis, the actuator has been made from titanium 
carbide TiC that constant material properties are: the elasticity modulus 0.480=E GPa, the 
mass density 4920=ρ kgm-3, the Poisson’s ratio 20.0=ν  and the coefficient of thermal 
expansion 6109.5 −×=Tα K-1.  
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The actuator (Figure 3) clamped at the nodes i, k, r, p and simply supported at the node m has 
been studied by modal analysis. The first three eigenfrequencies have been found (see Table 
1) using our new FGM beam finite element. The 1st order beam theory ( 0=IIN ) has been 
taken into account. Only one our new finite element was used for each part. The same 
problem has been solved using 10 BEAM3 elements of the FEM program ANSYS [19].  

Table 1: Eigenfrequency of the actuator made of one constituent 

Eigenfrequency 
[Hz] 

Al6061-TO TiC 
New finite 

element ANSYS New finite 
element ANSYS 

1st 290682 291325 567956 569214 
2nd 392640 394158 767167 770134 
3rd 395534 397081 772821 775845 

As shown in Table 1, the values obtained by both finite elements agree very well with each 
other.  

3.3 Case II – FGM actuator 
The FGM actuator with the same geometry as in previous cases has been considered (as 

shown in Figure 3). Material of the beams consists of two components: aluminum Al6061-TO 
as a matrix and titanium carbide TiC as a fibre. Material properties of the components are 
constant (not temperature dependent), same as in previous experiments. There are considering 
two different longitudinal variation of the fibres volume fraction and have been chosen as the 
polynomial function of the local beam axis x:

a) ( ) 2

90000
1

150
11 xxxv f +−=   b) ( ) 2

30000
1

100
1

xxxv f −=

that are shown in Figure 4. The first variation of the fibres volume fraction (denoted by a) has 
been considered in parts 1, 4, 5 and 7 (with initial point i, p, k and r) and the second variation 
of the fibres volume fraction (denoted by b) in parts 2, 3 and 6 (with initial point j, m, n and). 
According to Figure 4a-b zero values of the fibres volume fraction at the points j, l and n have 
been assumed. 

x �m

v x( ) -f v x( ) -f

x �m

a) b)

Figure 4: Fibre volume fraction variation 
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The effective material properties of the homogenized beams (as a function of their local                 
x-axis) have been calculated by the direct integration method [14] and we have got for the 
first a) variation of the fibres volume fraction (distribution of the elasticity modules are shown 
in Figure 5a): 

( ) ( ) 215128 10566667.410740.2108.4 xxxExE MH
L

NH
L ×+×−×== [kPa] 

( ) 215128 1075641,11005385.11084615.1 xxxGH
L ×+×−×=  [kPa] 

( ) 3107 1046667.21048.14920 xxxH
L ×+×−=ρ  [kgm-3] 

( ) 2

27

004566667.074.2480
102081.1000072486.001128.0

xx

xx
xH

TL +−
×+−=

−

α  [K-1] 

and for the second b) variation of the fibres volume fraction (distribution of the elasticity 
modules are shown in Figure 5b) 

( ) ( ) 216127 1037.11011.4109.6 xxxExE MH
L

NH
L ×−×+×== [kPa] 

( ) 215127 1026923.51058077.11065385.2 xxxGH
L ×−×+×=  [kPa]

( ) 3107 104.71022.22700 xxxH
L ×+×+=ρ   [kgm-3] 

( ) 2

27

0137.011.469
106243.3000108729.00004071.0

xx

xx
xH

TL −+
×++=

−

α  [K-1] 

a) b)

x �m

kPa

EL

NH
( )=x EL

MH
( )x

GL

H
( )x

x �m

kPa

EL

NH
( )=x EL

MH
( )x

GL

H
( )x

Figure 5: Homogenized elasticity modules 

Because of only longitudinal variation of the constituents volume fraction in this case the 
homogenized elasticity modulus (for axial and transversal loading) are equal each other. 
The coefficients of thermal expansion ( )xH

TLα  were not obtained as a polynomial so expansion 
to a Taylor series has to be used to convert them into the polynomial form. 

The average shear correction factor [15] for all beams is 38.0=smk  (constant Poisson ratio 
has been assumed for simplicity). The coupled modal analysis of the FGM actuator clamped 
at the nodes i, k, r, p and simply supported at the node m has been studied. The reference 
temperature is 20=refT °C. The thermal forces IIN in the beams and the critical buckling 
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temperature crT  have been calculated by the BEAM3 finite elements of the FEM program 
ANSYS [19]. A constant temperature load has been assumed on all parts of the actuator. 
Thermal axial forces have been evaluated for different temperature =T 40, 60 and 80°C and 
then have been used as input axial forces in the modal analysis. Thermal forces evaluated for 
different temperature in the actuator are presented in the Table 3. The load temperatures in 
Table 3 are lower as the critical buckling temperature of the FGM actuator, which is of 
128°C. So the pre-buckling thermal loading has been assumed.

Table 3: Thermal forces for different temperature

Thermal forces 
[N] 40 °C 60 °C 80 °C 

beam 1, 4 -6969 -13940 -20909 
beam 2, 3 -4489 -8979 -13469 
beam 5, 7 -5331 -10663 -15995 

beam 6 -3077 -6155 -9232 

The effect of the varying thermal axial force on the actuator eigenfrequency has been 
evaluated. The first three eigenfrequencies have been found for each set of thermal axial 
forces (see Table 4) using the new FGM beam finite element for modal analysis. Only one our 
new finite element was used for each actuator’s part. The same problem has been solved using 
a fine mesh – 1400 of BEAM3 elements (each element has different constant material 
properties) of the FEM program ANSYS [19]. The average relative difference ∆ [%] between 
eigenfrequencies calculated by our method and the ANSYS solution has been evaluated.  

Table 4: Eigenfrequencies of the FGM actuator 

Eigen-
frequency

[Hz] 

T = 20 °C  (NII = 0) T = 40 °C T = 60 °C T = 80 °C 

new 
finite 

element
ANSYS ∆

[%]

new 
finite 

element
ANSYS ∆

[%]

new 
finite 

element
ANSYS ∆

[%]

new 
finite 

element
ANSYS ∆

[%]

1st 471059 472690 0.35 437598 442590 1.13 397697 402240 1.13 347590 350830 0.92

2nd 595574 592030 0.60 551678 558870 1.29 499444 505190 1.14 436003 440390 1.00

3rd 610157 604660 0.91 571254 562620 1.58 519027 530010 2.11 498556 493660 1.00

 The results, obtained for the thermal loading free state ( 20=refT , 0=IIN ) which are 
presented in Table 1 and Table 4, show the effect of mixture of the both components on the 
eigenfrequency. The eigenfrequencies of FGM actuator lies between the eigenfrequencies of 
actuator made of only one constituent. 
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 The first three vibration eigenforms for thermal axial forces evaluated for temperature  
=T  60 °C are shown in Figure 6. 

1
st

2
nd

3
rd

Figure 6: The first three vibration eigenforms: T=60°C 

The effect of thermal axial forces evaluated for different temperatures (Table 3) on the 
eigenfrequencies is shown in Figure 7. As expected, the eigenfrequency decreases with 
increasing thermal load. 

f Hz

T °C

f

f

f

1

2

3

Figure 7: The effect of thermal axial forces evaluated for different temperature on the eigenfrequencies 

4 CONCLUSIONS 
Modal analysis of chosen actuator which is built of the FGM beams has been done by our 

new 2D beam finite element. Effects of the material properties and thermal axial forces on the 
eigenfrequency were analyzed. The temperature loads are lower than the critical buckling 
temperature. 

The obtained results by this new finite element have been studied and compared with 
results obtained by a fine mesh of the BEAM3 finite element of the program ANSYS. The 
main additions of our new approach are: 

- Eigenfrequncy of the actuator is dependent on the operating load, which is caused by 
internal compressive axial forces in the respective beams; 

- Eigenfrequencies of the system can be optimized by functional gradation of its 
material properties; 

- Our new FGM finite element can be used in very efficient modal and buckling 
analysis of 2D mechatronic beam-like structures.     
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