31 research outputs found

    All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Full text link
    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken from 234 days between June 2016 to February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of 2.49±0.01-2.49\pm0.01 prior to a break at (45.7±0.1(45.7\pm0.1) TeV, followed by an index of 2.71±0.01-2.71\pm0.01. The spectrum also respresents a single measurement that spans the energy range between direct detection and ground based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review

    Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at √s = 13 TeV

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    MAGIC and Fermi-LAT gamma-ray results on unassociated HAWC sources

    Get PDF
    The HAWC Collaboration released the 2HWC catalogue of TeV sources, in which 19 show no association with any known high-energy (HE; E greater than or similar to 10 GeV) or very-high-energy (VHE; E greater than or similar to 300 GeV) sources. This catalogue motivated follow-up studies by both the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) and Fermi-LAT (Large Area Telescope) observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between High Altitude Water Cherenkov (HAWC), MAGIC, and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084*, and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1 degrees extension (at 95 per cent confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, whilst a simply minimum extension of 0.16 degrees (at 95 per cent confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail

    Experimental studies of the arc chamber short circuit failure mechanism on the DIII-D neutral beam system

    No full text
    Here we report on efforts to improve performance and longevity of the Neutral Beam Injection (NBI) system by initiating a R&D program aimed at studying the most common failure mechanism for the ion sources. To this end a filament driven plasma chamber has been constructed with plasma parameters similar to the arc chamber of NBI ion sources. A preliminary report of an investigation into the most common failure is presented here: The failure mechanism observed during helium operations on DIII-D is the result of electrical breakdown of the insulation material that separates the filament plates from the anode. The fault is reproduced in a table top experiment analogous to the DIII-D NBI ion source in key parameters and proposals for amelioration of the issue are discussed

    Experimental studies of the arc chamber short circuit failure mechanism on the DIII-D neutral beam system

    Get PDF
    \u3cp\u3eHere we report on efforts to improve performance and longevity of the Neutral Beam Injection (NBI) system by initiating a R&D program aimed at studying the most common failure mechanism for the ion sources. To this end a filament driven plasma chamber has been constructed with plasma parameters similar to the arc chamber of NBI ion sources. A preliminary report of an investigation into the most common failure is presented here: The failure mechanism observed during helium operations on DIII-D is the result of electrical breakdown of the insulation material that separates the filament plates from the anode. The fault is reproduced in a table top experiment analogous to the DIII-D NBI ion source in key parameters and proposals for amelioration of the issue are discussed.\u3c/p\u3

    Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    No full text
    Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutan

    Diabetes, undernutrition, migration and indigenous communities: tuberculosis in Chiapas, Mexico

    No full text
    We investigated the distribution of comorbidities among adult tuberculosis (TB) patients in Chiapas, the poorest Mexican state, with a high presence of indigenous population, and a corridor for migrants from Latin America. Secondary analysis on 5508 new adult TB patients diagnosed between 2010 and 2014 revealed that the most prevalent comorbidities were diabetes mellitus (DM; 19.1%) and undernutrition (14.4%). The prevalence of DM in these TB patients was significantly higher among middle aged (41–64 years) compared with older adults (⩾65 years) (38.6% vs. 23.2%; P \u3c 0.0001). The prevalence of undernutrition was lower among those with DM, and higher in communities with high indigenous presence. Immigrants only comprised 2% of all TB cases, but were more likely to have unfavourable TB treatment outcomes (treatment failure, death and default) when compared with those born in Chiapas (29.5% vs. 11.1%; P \u3c 0.05). Unfavourable TB outcomes were also more prevalent among the TB patients with undernutrition, HIV or older age, but not DM (P \u3c 0.05). Our study in Chiapas illustrates the challenges of other regions worldwide where social (e.g. indigenous origin, poverty, migration) and host factors (DM, undernutrition, HIV, older age) are associated with TB. Further understanding of these critical factors will guide local policy makers and health providers to improve TB management
    corecore