43 research outputs found
Reconstruindo a Escala Kansas de Reflexão-Impulsividade para Pré-escolares (KRISP)
A escala Kansas de Reflexão-Impulsividade para Pré-escolares (KRISP) foi desenvolvida na década de setenta do século passado para avaliar os estilos cognoscitivos de reflexão-impulsividade (R-I). Estudos posteriores demonstraram que a KRISP apresentava algumas deficiências para avaliar os estilos de R-I em pré-escolares; porém, por não existir outro instrumento, esta escala continua sendo utilizada internacionalmente. Este estudo teve como objetivo obter uma nova versão da escala KRISP como ferramenta confiável para o estudo dos estilos de R-I. Participaram 59 crianças com uma idade média de 3.9 anos (DE = 0.39). Várias estratégias metodológicas permitiram obter uma versão da KRISP com 10 itens. A análise desta versão indicou valores alfa de Cronbach de .83 para as latências e .67 para os erros e uma correlação latência-total de erros de -.36 (p = .002). Discute-se a importância desta nova versão, denominada KRISP-R, bem como a necessidade de estudos com mostras maiores que a deste estudo e que incluam variáveis que tradicionalmente se relacionaram com os estilos de R-I.The Kansas Reflection-Impulsivity Scale for Preschoolers (KRISP) was developed in the 70's of the last century for testing the cognitive styles of reflection-impulsivity (R-I). Later, research studies pointed out some deficiencies of the KRISP as a measure of R-I styles; however, researchers are still using the KRISP, probably because it is the sole scale available to test preschoolers' styles. The aim of the present study was to develop an improved version of the scale for the assessment of R-I in preschoolers. Participants were 59 preschoolers with a mean age of 3.4 years (SD = 0.39). Several methodological strategies allowed the authors to develop a 10-itemversion of the scale. Analyses with this new version indicated alpha Cronbach coefficients of .82 for latencies and of .67 for total errors. The obtained correlation between latency and errors was -.36 (p = .002). Based on these analyses a new version of the scale, called KRISP-R, is proposed. The importance of carrying out research studies of the new scale but with bigger samples and variables that have been traditionally related with the R-I styles is also discussed.La escala Kansas de Reflexión-Impulsividad para Preescolares (KRISP) fue desarrollada en la década de los setentas del siglo pasado para evaluar los estilos cognoscitivos de reflexión-impulsividad (R-I). Estudios posteriores demostraron que la KRISP presentaba algunas deficiencias para evaluar los estilos de R-I en preescolares; sin embargo, al no existir otro instrumento, esta escala se ha seguido utilizando a nivel internacional. Este estudio tuvo como objetivo lograr una nueva versión de la escala KRISP como herramienta confiable para el estudio de los estilos de R-I. Participaron 59 niños con una edad promedio de 3.9 años (DE = 0.39). Varias estrategias metodológicas permitieron obtener una versión de la KRISP con 10 ítems. El análisis de esta versión indicó valores alfa de Cronbach de .83 para las latencias y .67 para los errores y una correlación latencia-total de errores de -.36 (p = .002). Se discute la importancia de esta nueva versión, denominada KRISP-R, así como la necesidad de estudios con muestras mayores que la de este estudio y que incluyan variables que tradicionalmente se han relacionado con los estilos de R-I
Sistematización de experiencias educativas transformadoras
Analizar cómo las instituciones educativas intervenidas posibilitan la construcción de vínculos sociales desde
prácticas interculturales que reconozcan la diversidadEste proceso de investigación se fundamenta en los principios de la sistematización de experiencias educativas, en la cual se buscó resaltar aquellas que tenían conexión con procesos de interculturalidad, diversidad e inclusión, en articulación con la sublínea de investigación “Procesos educativos para la diversidad y la transformación cultural” de la Maestría en Educación de la Corporación Universitaria Minuto de Dios. Este informe da cuenta de los hallazgos más representativos de experiencias que se desarrollan en seis regiones diferentes de Colombia. El ejercicio de investigación se lleva a cabo en el marco de la estrategia formativa denominada “Proyectos Sombrilla” para lo cual se consolidó un grupo de 13 investigadores que han adelantado de forma sistemática el ejercicio de investigación que el lector podrá conocer a partir de este informe construido colectivamente por todos los integrantes del equipo. Esta investigación surge a partir del interés de conocer cuáles son los aprendizajes-saberes construidos por las comunidades académicas en el marco de experiencias educativas que apelan a la generación de prácticas interculturales y a la construcción de vínculos sociales con sus comunidades educativas y territoriale
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data
This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys
The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra
This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)
Recommended from our members
The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra
This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)
Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Recommended from our members
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing
three major spectroscopic programs. The Apache Point Observatory Galactic
Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky
Way stars at high resolution and high signal-to-noise ratio in the
near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA)
survey is obtaining spatially-resolved spectroscopy for thousands of nearby
galaxies (median redshift of z = 0.03). The extended Baryon Oscillation
Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas
distributions between redshifts z = 0.6 and 3.5 to constrain cosmology using
baryon acoustic oscillations, redshift space distortions, and the shape of the
power spectrum. Within eBOSS, we are conducting two major subprograms: the
SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray
AGN and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey
(TDSS), obtaining spectra of variable sources. All programs use the 2.5-meter
Sloan Foundation Telescope at Apache Point Observatory; observations there
began in Summer 2014. APOGEE-2 also operates a second near-infrared
spectrograph at the 2.5-meter du Pont Telescope at Las Campanas Observatory,
with observations beginning in early 2017. Observations at both facilities are
scheduled to continue through 2020. In keeping with previous SDSS policy,
SDSS-IV provides regularly scheduled public data releases; the first one, Data
Release 13, was made available in July 2016
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July