63 research outputs found

    Mitochondria form cholesterol-rich contact sites with the nucleus during retrograde response

    Get PDF
    Cholesterol metabolism is pivotal to cellular homeostasis, hormones production, and membranes composition. Its dysregulation associates with malignant reprogramming and therapy resistance. Cholesterol is trafficked into the mitochondria for steroidogenesis by the transduceome protein complex, which assembles on the outer mitochondrial membrane (OMM). The highly conserved, cholesterol-binding, stress-reactive, 18kDa translocator protein (TSPO), is a key component of this complex. Here, we modulate TSPO to study the process of mitochondrial retrograde signalling with the nucleus, by dissecting the role played by cholesterol and its oxidized forms. Using confocal and ultrastructural imaging, we describe that TSPO enriched mitochondria, remodel around the nucleus, gathering in cholesterol-enriched domains (or contact sites). This communication is controlled by HMG-CoA reductase inhibitors (statins), molecular and pharmacological regulation of TSPO. The described Nucleus-Associated Mitochondria (NAM) seem to be implementing survival signalling in aggressive forms of breast cancer. This work therefore provides the first evidence for a functional and bio-mechanical tethering between mitochondria and nucleus, as being the basis of pro-survival mechanisms, thus establishing a new paradigm in cross-organelle communication via cholesterol re-distribution

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Case study: Ichthyosis in two chianina calves

    No full text
    The occurrence of Ichthyosis in two Italian Chianina calves is described for the first time. Both animals, affected by Ichthyosis fetalis and Ichthyosis congenita respectively, showed diffuse cutaneous thickening, since birth. The first patient was a three-month-old female calf; inelastic leather cuirass-like skin associated to generalized hypotrichosis and local alopecia, delay of the physiologic change of the coat colour, stiff movement and growth retardation were the most prominent clinical characteristics. The patient was kept under observation for almost one year. The second case occurred in a 18-day-old female calf, which was referred already dead; presence of irregular hyperkeratotic plates separated by deep fissures over the entire cutaneous surface, and slight eversion of the mucocutaneous junction (eclabium and ectropion) were the most characteristic alterations. In both cases, the major histopathological feature was a diffuse lamellar orthokeratotic hyperkeratosis. Although no familial relationship was detected between the two patients, an underlying genetic defect was strongly suspected on the basis of current knowledge

    Systemic fatal type coronavirus infection in a dog: pathological findings and immunohistochemistry

    No full text
    A case of fatal systemic coronavirus infection is described in a 53-day-old Pekinese dog. Pathological findings and immunohistochemical identification using a monoclonal anti-canine Coronavirus antibody are included. Visceral lesions consisted of extensive fibrinopurulent bronchopneumonia, multiple renal cortical infarcts, severe coalescing centrilobular hepatic fatty change with minimal random hepatic necrosis, and multifocal splenic haemorrhage with lymphoid depletion. Moderate chronic diffuse enteritis was associated with intraluminal adult ascarids. Identification of type I and type 11 coronavirus in this subject had been previously confirmed by genotype-specific real-time reverse transcription-polymerase chain reaction (RT-PCR) assays of the intestinal contents, while only Coronavirus type 11 was detected in visceral organs. This case represents the first description of morphological lesions associated with a type 11 pantropic fatal coronavirus infection in the dog. (c) 2007 Elsevier Ltd. All rights reserved
    corecore