76 research outputs found
Upper-plate magma-poor rifted margins: stratigraphic architecture and structural evolution
International audienceAlthough it is generally accepted that many distal, magma-poor rifted margins are asymmetric and can be divided into lower and upper plate margins, little is known about the details of how and when this asymmetry evolves and how upper and lower plate margins can be distinguished. This is due to the fact that most papers focused on the so called lower plate margins, while the upper plate margins remained less well understood, mainly due to the lack of public accessible drill hole data. The aim of this paper is to provide a first order description of the global architecture and stratigraphic evolution of an upper plate, magma-poor rifted margin. In order to provide such a template, we focused on 2 seismic sections, the ION-1000 line (East Indian margin), and the SCREECH 2 line (Newfoundland margin) and describe key, km-scale outcrops from the fossil European margin exposed in the Western/Central Alps, all of which document classical upper plate margins. Based on these data we show that upper plate magma-poor rifted margins can be characterized by a staircase type architecture with terraces (T1, T2, T3) and ramps (R1, R2) that result as a consequence of an evolution through a coupling, exhumation and breakup stage. We also defined key stratigraphic levels that we try to link with the evolution of the margin which enables us to link the tectonic evolution with the creation of accommodation space and formation of the staircase architecture that characterizes the upper plate margin. From these observations we develop a conceptual model for the evolution of upper-plate margins and discuss the applicability of this model for different strain rates, rates of subsidence and sedimentation rates
The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data
International audienceThe wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determinethe deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin.The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Itscurrent geometry shows first- and second-order segmentation: our study focusses on theAshawqâSalalah second-order segment, between AlulaâFartak and SocotraâHadbeen fracturezones. Modelling of theWAS and gravity data (three profiles across and three along the margin)gives insights into the first- and second-order structures. (1) Continental thinning is abrupt(15â20 km thinning across 50â100 km distance). It is accommodated by several tilted blocks.(2) The oceanâcontinent transition (OCT) is narrow (15 km wide). The velocity modellingprovides indications on its geometry: oceanic-type upper-crust (4.5 km sâ1) and continentaltypelower crust (>6.5 km sâ1). (3) The thickness of the oceanic crust decreases from West(10 km) to the East (5.5 km). This pattern is probably linked to a variation of magma supplyalong the nascent slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6to 7.8 kmsâ1) exists at the crust-mantle interface below the thinned margin, the OCT and theoceanic crust. We interpret it as an underplated mafic body, or partly intruded mafic materialemplaced during a âpost-riftâ event, according to the presence of a young volcano evidencedby heat-flow measurement (Encens-Flux survey) and multichannel seismic reflection (Encenssurvey). We propose that the non-volcanic passive margin is affected by post-rift volcanismsuggesting that post-rift melting anomalies may influence the late evolution of non-volcanicpassive margins
Post break-up tectonic inversion across the southwestern cape of South Africa: new insights from apatite and zircon fission track thermochronometry
The south-west African margin is regarded as an example of a passive continental margin formed by continental rifting following a phase of lithospheric extension and thinning. Recent attention focused on this margin has included theoretical modelling studies of rift processes, plate kinematic studies of the opening geometry and timing, and empirical studies focused on documenting the crustal structure and offshore sedimentary record. Here, we examine the onshore geomorphic and tectonic response to rifting and breakup, with a specific focus on the SW Cape of South Africa. We present 75 new apatite and 8 new zircon fission track analyses from outcrop samples and onshore borehole profiles along the western margin of South Africa. The data are used to derive robust thermal histories that record two discrete phases of accelerated erosional cooling during the Early Cretaceous (150-130 Ma) and Late Cretaceous (100-80 Ma), respectively. Both periods of enhanced erosion are regional in extent, involved km-scale erosion, and extend well inland of the current escarpment zone, albeit with spatially variable intensity and style. The Late Cretaceous episode is also expressed more locally by tectonic reactivation and inversion of major faults causing km-scale differential displacement and erosion. The new AFT data do not exclude the possibility of modest surface uplift occurring during the Cenozoic, but they restrict the depth of regional Cenozoic erosion on the western margin to less than c. 1 km. The inferred pattern and chronology of erosion onshore is consistent with the key features and sediment accumulation patterns within the offshore Orange and Bredasdorp basins. It is suggested that the Late Cretaceous event was triggered by a combination of regional dynamic uplift augmented along the western margin and in the SW Cape by local tectonic forces arising from dextral displacement of the Falkland Plateau along the Falkland-Agulhas Fracture Zone
Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees
International audienceThe Bay of Biscay and the Pyrenees correspond to a Lower Cretaceous rift system including both oceanic and hyperextended rift domains. The transition from preserved oceanic and rift domains in the West to their complete inversion in the East enables us to study the progressive reactivation of a hyperextended rift system. We use seismic interpretation, gravity inversion, and field mapping to identify and map former rift domains and their subsequent reactivation. We propose a new map and sections across the system illustrating the progressive integration of the rift domains into the orogen. This study aims to provide insights on the formation of hyperextended rift systems and discuss their role during reactivation. Two spatially and temporally distinct rift systems can be distinguished: the Bay of Biscay-Parentis and the Pyrenean-Basque-Cantabrian rifts. While the offshore Bay of Biscay represent a former mature oceanic domain, the fossil remnants of hyperextended domains preserved onshore in the Pyrenean-Cantabrian orogen record distributed extensional deformation partitioned between strongly segmented rift basins. Reactivation initiated in the exhumed mantle domain before it affected the hyperthinned domain. Both domains accommodated most of the shortening. The final architecture of the orogen is acquired once the conjugate necking domains became involved in collisional processes. The complex 3-D architecture of the initial rift system may partly explain the heterogeneous reactivation of the overall system. These results have important implications for the formation and reactivation of hyperextended rift systems and for the restoration of the Bay of Biscay and Pyrenean domain
Hyper-extended crust in the south atlantic: In search of a model.
International audienc
- âŠ