495 research outputs found

    Spin-Wave Lifetimes Throughout the Brillouin Zone

    Full text link
    We use a neutron spin-echo method with μ\mueV resolution to determine the lifetimes of spin waves in the prototypical antiferromagnet MnF2_2 over the entire Brillouin zone. A theory based on the interaction of magnons with longitudinal spin fluctuations provides an excellent, parameter-free description of the data, except at the lowest momenta and temperatures. This is surprising, given the prominence of alternative theories based on magnon-magnon interactions in the literature. The results and technique open up a new avenue for the investigation of fundamental concepts in magnetism. The technique also allows measurement of the lifetimes of other elementary excitations (such as lattice vibrations) throughout the Brillouin zone.Comment: 12 pages, 4 figure

    Energy Gaps and Kohn Anomalies in Elemental Superconductors

    Full text link
    The momentum and temperature dependence of the lifetimes of acoustic phonons in the elemental superconductors Pb and Nb was determined by resonant spin-echo spectroscopy with neutrons. In both elements, the superconducting energy gap extracted from these measurements was found to converge with sharp anomalies originating from Fermi-surface nesting (Kohn anomalies) at low temperatures. The results indicate electron many-body correlations beyond the standard theoretical framework for conventional superconductivity. A possible mechanism is the interplay between superconductivity and spin- or charge-density-wave fluctuations, which may induce dynamical nesting of the Fermi surface

    Electrochemical De-intercalation, Oxygen Non-stoichiometry, and Crystal Growth of NaxCoO2-d

    Full text link
    We report a detailed study of de-intercalation of Na from the compound NaxCoO2-d using an electrochemical technique. We find evidence for stable phases with Na contents near the fractions ~1/3, 1/2, 5/8, 2/3, and 3/4. Details regarding the floating-zone crystal growth of Na0.75CoO2 single crystals are discussed as well as results from magnetic susceptibility measurements. We observe the presence of significant oxygen deficiencies in powder samples of Na0.75CoO2-d prepared in air, but not in single crystal samples prepared in an oxygen atmosphere. The oxygen deficiencies in a Na0.75CoO2-d sample with d ~ 0.08 remain even after electrochemically de-intercalating to Na0.3CoO2-d.Comment: 6 pages, 5 figure

    295 ISOKINETIC TORQUE AND FUNCTIONAL CAPACITY IN WOMEN WITH AND WITHOUT OSTEOARTHRITIS OF THE KNEE

    Get PDF

    Lifetimes of antiferromagnetic magnons in two and three dimensions: experiment, theory, and numerics

    Full text link
    A high-resolution neutron spectroscopic technique is used to measure momentum-resolved magnon lifetimes in the prototypical two- and three-dimensional antiferromagnets Rb2MnF4 and MnF2, over the full Brillouin zone and a wide range of temperatures. We rederived theories of the lifetime resulting from magnon-magnon scattering, thereby broadening their applicability beyond asymptotically small regions of wavevector and temperature. Corresponding computations, combined with a small contribution reflecting collisions with domain boundaries, yield excellent quantitative agreement with the data.Comment: 5 pages, 4 figure

    Large enhancement of the thermopower in Nax_xCoO2_2 at high Na doping

    Full text link
    Research on the oxide perovskites has uncovered electronic properties that are strikingly enhanced compared with those in conventional metals. Examples are the high critical temperatures of the cuprate superconductors and the colossal magnetoresistance in the manganites. The conducting layered cobaltate NaxCoO2\rm Na_xCoO_2 displays several interesting electronic phases as xx is varied including water-induced superconductivity and an insulating state that is destroyed by field. Initial measurements showed that, in the as-grown composition, NaxCoO2\rm Na_xCoO_2 displays moderately large thermopower SS and conductivity σ\sigma. However, the prospects for thermoelectric cooling applications faded when the figure of merit ZZ was found to be small at this composition (0.6<x<<x<0.7). Here we report that, in the poorly-explored high-doping region x>x>0.75, SS undergoes an even steeper enhancement. At the critical doping xp∼x_p\sim 0.85, ZZ (at 80 K) reaches values ∼\sim40 times larger than in the as-grown crystals. We discuss prospects for low-temperature thermoelectric applications.Comment: 6 pages, 7 figure

    Synthesis of Asymmetrical Macrocyclic Ligands and their Metal Complexes

    Get PDF
    Our motive behind the synthesis of this type of asymmetrical macrocyclic ligands was to examine their possible applications in cation recognition processes, as homo or heteronuclear complexes can be synthesized from alkali and transition metal cations and these complexes may also serve as models of relevance to bioinorganic chemistry such as metalloenzymes. Even though the enormous number of Schiff base macrocycles and their complexes have already been described, many more interesting systems of this type surely await discovery. These structures are found to be powerful tools used to define interesting features relating to general chemistry and application. In this study, we present the preparation of the asymmetrical acyclic and cyclic compartmental Schiff bases containing two adjacent chambers to obtain the mono and dinuclear complexes with the appropriate alkaline earth and transition metal center and their related soft and hard complexes. We used 2,3-dihydroxy benzaldehyde as a starting material and obtained the macrocyclic ligands by the reaction of 2,3-dihydroxy benzaldehyde and bis(2-aminopropyl) amine in the presence of Ba(ClO4)2 as template agent, then its appropriate transition metal complex as with Ni+2 in CH3OH was prepared. All of the compounds were characterized by elemental analysis, IR, 1H NMR and MS spectrophotometer techniques

    Study of intercalation and deintercalation of Na_xCoO_2 yH_2O single crystals

    Full text link
    Single crystals of NaxCoO2 with beta-phase (x=0.55, 0.60 and 0.65), alpha'-phase (x=0.75) and alpha-phase (x=0.9, 1.0) have been grown by the floating zone technique. The Na-extraction and hydration were carried out for the alpha'-sample to get superconducting phase of NaxCoO2.yH2O (x~0.3, y~1.3). Hydrated single crystals exhibit cracked layers perpendicular to the c-axis due to a large expansion when the water is inserted into the structure. A study of intercalation/deintercalation was performed to determine the stability of the hydrated phase and effects of hydration on the structure of the compound. X-ray diffraction and Thermogravimetric experiments are used to monitor the process of water molecules accommodated in and removed from the crystal lattice. The initial intercalation process takes place with two-water molecules corresponding to y=0.6) inserted in a formula unit, followed by a group of four (y=1.3) to form a cluster of Na(H2O)4. Thermogravimetric analysis suggests that the deintercalation occurs with the removal of the water molecules one by one from the hydrated cluster at elevated temperatures of approximately 50, 100, 200 and 300 C, respectively. Our investigations reveal that the hydration process is dynamic and that water molecule inter- and deintercalation follow different reaction paths in an irreversible way.Comment: 15 pages, 6 figures, figures with higher resolution by email request from the corresponding autho
    • …
    corecore