93 research outputs found

    The Arts as a Teaching Tool and the Power of Collaboration and Co-teaching

    Get PDF
    Over the last seventeen years, an arts education initiative has transformed the dynamics of an isolated rural school into a model for rural arts access. Three teachers from Copper Basin High School began an avalanche of possibilities in 1997 when the Annenberg Rural Challenge Grant provided funding to begin a new era in a small rural school. Isolated by geographical boundaries and stifled by economical hardships since the closing of the copper mines in 1988, something had to be done. After a series of teacher in-services for visual strategies (using art as a teaching tool reflective of Gardner\u27s Multiple Intelligences), followed with collaborations between teachers and art consultants, students were led to a deeper understanding through problem solving, critical thinking, and creative explorations. After this experiment proved successful, in a grassroots self-supporting survival move, a non-profit organization was established and grants were obtained to continue and expand the work. In 2004, an unexpected corporate partnership with Glenn Springs Holdings, Inc. was established to provide funding and support to develop the Copper Basin Learning Center. This session examines the path that led to the Learning Center, challenges faced along the way, and what works in the program and why. There is a lot of talk on the educational forefront today concerning moving from STEM to STEAM, with the arts being a significant component. Discussion will include dispelling basic assumptions and developing a workable plan of action for incorporating the arts in the school curriculum

    Patches for Repairing Ceramics and Ceramic-Matrix Composites

    Get PDF
    Patches consisting mostly of ceramic fabrics impregnated with partially cured polymers and ceramic particles are being developed as means of repairing ceramics and ceramic-matrix composites (CMCs) that must withstand temperatures above the melting points of refractory metal alloys. These patches were conceived for use by space-suited, space-walking astronauts in repairing damaged space-shuttle leading edges: as such, these patches could be applied in the field, in relatively simple procedures, and with minimal requirements for specialized tools. These design characteristics also make the patches useful for repairing ceramics and CMCs in terrestrial settings. In a typical patch as supplied to an astronaut or repair technician, the polymer would be in a tacky condition, denoted as an A stage, produced by partial polymerization of a monomeric liquid. The patch would be pressed against the ceramic or CMC object to be repaired, relying on the tackiness for temporary adhesion. The patch would then be bonded to the workpiece and cured by using a portable device to heat the polymer to a curing temperature above ambient temperature but well below the maximum operating temperature to which the workpiece is expected to be exposed. The patch would subsequently become pyrolized to a ceramic/glass condition upon initial exposure to the high operating temperature. In the original space-shuttle application, this exposure would be Earth-atmosphere-reentry heating to about 3,000 F (about 1,600 C). Patch formulations for space-shuttle applications include SiC and ZrO2 fabrics, a commercial SiC-based pre-ceramic polymer, and suitable proportions of both SiC and ZrO2 particles having sizes of the order of 1 m. These formulations have been tailored for the space-shuttle leading-edge material, atmospheric composition, and reentry temperature profile so as to enable repairs to survive re-entry heating with expected margin. Other formulations could be tailored for specific terrestrial applications

    Ceramic Paste for Patching High-Temperature Insulation

    Get PDF
    A ceramic paste that can be applied relatively easily, either by itself or in combination with one or more layer(s) of high-temperature ceramic fabrics, such as silicon carbide or zirconia, has been invented as a means of patching cracks or holes in the reinforced carbon-carbon forward surfaces of a space shuttle in orbit before returning to Earth. The paste or the paste/fabric combination could also be used to repair rocket-motor combustion chambers, and could be used on Earth to patch similar high-temperature structures. The specified chemical composition of the paste admits of a number of variations, and the exact proportions of its constituents are proprietary. In general, the paste consists of (1) silicon carbide, possibly with addition of (2) hafnium carbide, zirconium carbide, zirconium boride, silicon tetraboride, silicon hexaboride, or other metal carbides or oxides blended with (3) a silazane-based polymer. Because the paste is viscous and sticky at normal terrestrial and outer-space ambient temperatures, high-temperature ceramic fabrics such as silicon carbide or zirconia fabric impregnated with the paste (or the paste alone) sticks to the damaged surface to which it is applied. Once the patch has been applied, it is smoothed to minimize edge steps as required [forward-facing edge steps must be < or equal to 0.030 in. (< or equal to 0.76 mm) in the original intended space-shuttle application]. The patch is then heated to a curing temperature thereby converting it from a flexible material to a hard, tough material. The curing temperature is 375 to 450 F (approx.190 to 230 C). In torch tests and arc-jet tests, the cured paste was found to be capable of withstanding a temperature of 3,500 F (approx. 1,900 C) for 15 minutes. As such, the material appears to satisfy the requirement, in the original space-shuttle application, to withstand re-entry temperatures of approx.3,000 F (approx. 1,600 C)

    In-Depth Interviews With State Public Health Practitioners On The United States National Physical Activity Plan

    Get PDF
    Abstract Background The United States National Physical Activity Plan (NPAP; 2010), the country’s first national plan for physical activity, provides strategies to increase population-level physical activity to complement the 2008 physical activity guidelines. This study examined state public health practitioner awareness, dissemination, use, challenges, and recommendations for the NPAP. Methods In 2011–2012, we interviewed 27 state practitioners from 25 states. Interviews were recorded and transcribed verbatim. Transcripts were coded using a standard protocol, verified and reconciled by an independent coder, and input into qualitative software to facilitate development of common themes. Results NPAP awareness was high among state practitioners; dissemination to local constituents varied. Development of state-level strategies and goals was the most frequently reported use of the NPAP. Some respondents noted the usefulness of the NPAP for coalitions and local practitioners. Challenges to the plan included implementation cost, complexity, and consistency with other policies. The most frequent recommendation made was to directly link examples of implementation activities to the plan. Conclusions These results provide early evidence of NPAP dissemination and use, along with challenges encountered and suggestions for future iterations. Public health is one of eight sectors in the NPAP. Further efforts are needed to understand uptake and use by other sectors, as well as to monitor long-term relevance, progress, and collaboration across sectors

    Physical Activity-Related Policy and Environmental Strategies to Prevent Obesity in Rural Communities: A Systematic Review of the Literature, 2002-2013

    Get PDF
    Citation: Meyer, M. R. U., Perry, C. K., Sumrall, J. C., Patterson, M. S., Walsh, S. M., Clendennen, S. C., . . . Valko, C. (2016). Physical Activity-Related Policy and Environmental Strategies to Prevent Obesity in Rural Communities: A Systematic Review of the Literature, 2002-2013. Preventing Chronic Disease, 13, 24. doi:10.5888/pcd13.150406Additional Authors: Valko, C.Introduction Health disparities exist between rural and urban residents; in particular, rural residents have higher rates of chronic diseases and obesity. Evidence supports the effectiveness of policy and environmental strategies to prevent obesity and promote health equity. In 2009, the Centers for Disease Control and Prevention recommended 24 policy and environmental strategies for use by local communities: the Common Community Measures for Obesity Prevention (COCOMO); 12 strategies focus on physical activity. This review was conducted to synthesize evidence on the implementation, relevance, and effectiveness of physical activity-related policy and environmental strategies for obesity prevention in rural communities. Methods A literature search was conducted in PubMed, PsycINFO, Web of Science, CINHAL, and PAIS databases for articles published from 2002 through May 2013 that reported findings from physical activity-related policy or environmental interventions conducted in the United States or Canada. Each article was extracted independently by 2 researchers. Results Of 2,002 articles, 30 articles representing 26 distinct studies met inclusion criteria. Schools were the most common setting (n = 18 studies). COCOMO strategies were applied in rural communities in 22 studies; the 2 most common COCOMO strategies were "enhance infrastructure supporting walking" (n = 11) and " increase opportunities for extracurricular physical activity" (n = 9). Most studies (n = 21) applied at least one of 8 non-COCOMO strategies; the most common was increasing physical activity opportunities at school outside of physical education (n = 8). Only 14 studies measured or reported physical activity outcomes (10 studies solely used self-report); 10 reported positive changes. Conclusion Seven of the 12 COCOMO physical activity-related strategies were successfully implemented in 2 or more studies, suggesting that these 7 strategies are relevant in rural communities and the other 5 might be less applicable in rural communities. Further research using robust study designs and measurement is needed to better ascertain implementation success and effectiveness of COCOMO and non-COCOMO strategies in rural communities

    The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission Concept Design Update

    Get PDF
    In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASAs Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15-meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 microns. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10(exp -10) contrast at inner working angles as small as 2 lambda/D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National dEtudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017

    N plus 3 Advanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Period

    Get PDF
    Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies

    Exploring synergies and trade-offs among the sustainable development goals: collective action and adaptive capacity in marginal mountainous areas of India

    Get PDF
    Global environmental change (GEC) threatens to undermine the sustainable development goals (SDGs). Smallholders in marginal mountainous areas (MMA) are particularly vulnerable due to precarious livelihoods in challenging environments. Acting collectively can enable and constrain the ability of smallholders to adapt to GEC. The objectives of this paper are: (i) identify collective actions in four MMA of the central Indian Himalaya Region, each with differing institutional contexts; (ii) assess the adaptive capacity of each village by measuring livelihood capital assets, diversity, and sustainable land management practices. Engaging with adaptive capacity and collective action literatures, we identify three broad approaches to adaptive capacity relating to the SDGs: natural hazard mitigation (SDG 13), social vulnerability (SDG 1, 2 and 5), and social–ecological resilience (SDG 15). We then develop a conceptual framework to understand the institutional context and identify SDG synergies and trade-offs. Adopting a mixed method approach, we analyse the relationships between collective action and the adaptive capacity of each village, the sites where apparent trade-offs and synergies among SDGs occur. Results illustrate each village has unique socio-environmental characteristics, implying distinct development challenges, vulnerabilities and adaptive capacities exist. Subsequently, specific SDG synergies and trade-offs occur even within MMA, and it is therefore crucial that institutions facilitate locally appropriate collective actions in order to achieve the SDGs. We suggest that co-production in the identification, prioritisation and potential solutions to the distinct challenges facing MMA can increase understandings of the specific dynamics and feedbacks necessary to achieve the SDGs in the context of GEC

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore