51 research outputs found

    CDC6:A novel canine tumour biomarker detected in circulating extracellular vesicles

    Get PDF
    Circulating nucleic acids and extracellular vesicles (EV) represent novel biomarkers to diagnose cancer. The non-invasive nature of these so-called liquid biopsies provides an attractive alternative to tissue biopsy-based cancer diagnostics. This study aimed to investigate if circulating cell cycle-related E2F target transcripts can be used to diagnose tumours in canine tumour patients with different types of tumours. Furthermore, we assessed if these mRNAs are localised within circulating EV. We isolated total RNA from the plasma of 20 canine tumour patients and 20 healthy controls. Four E2F target genes (CDC6, DHFR, H2AFZ and ATAD2) were selected based on the analysis of published data of tumour samples available in public databases. We performed reverse transcription and quantitative real-time PCR to analyse the plasma levels of selected E2F target transcripts. All four E2F target transcripts were detectable in the plasma of canine tumour patients. CDC6 mRNA levels were significantly higher in the plasma of canine tumour patients compared to healthy controls. A subset of canine tumour patient and healthy control plasma samples (n = 7) were subjected to size exclusion chromatography in order to validate association of the E2F target transcripts to circulating EV. For CDC6, EV analysis enhanced their detectability compared to total plasma analysis. In conclusion, our study reveals circulating CDC6 as a promising non-invasive biomarker to diagnose canine tumours

    Relationships of APOE genotypes with small RNA and protein cargo of brain tissue extracellular vesicles from patients with late-stage AD

    Get PDF
    Background and Objectives Variants of the apolipoprotein E (APOE) gene are the greatest known risk factors for sporadic Alzheimer disease (AD). Three major APOE isoform alleles, ϵ2, ϵ3, and ϵ4, encode and produce proteins that differ by only 1-2 amino acids but have different binding partner interactions. Whereas APOE ϵ2 is protective against AD relative to ϵ3, ϵ4 is associated with an increased risk for AD development. However, the role of APOE in gene regulation in AD pathogenesis has remained largely undetermined. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells to dispose of unwanted materials and mediate intercellular communication, and they are implicated in AD pathophysiology. Brain-derived EVs (bdEVs) could act locally in the tissue and reflect cellular changes. To reveal whether APOE genotype affects EV components in AD brains, bdEVs were separated from patients with AD with different APOE genotypes for parallel small RNA and protein profile. Methods bdEVs from late-stage AD brains (BRAAK stages 5-6) from patients with APOE genotypes ϵ2/3 (n = 5), ϵ3/3 (n = 5), ϵ3/4 (n = 6), and ϵ4/4 (n = 6) were separated using our published protocol into a 10,000g pelleted extracellular fraction (10K) and a further purified EV fraction. Counting, sizing, and multiomic characterization by small RNA sequencing and proteomic analysis were performed for 10K, EVs, and source tissue. Results Comparing APOE genotypes, no significant differences in bdEV total particle concentration or morphology were observed. Overall small RNA and protein profiles of 10K, EVs, and source tissue also did not differ substantially between different APOE genotypes. However, several differences in individual RNAs (including miRNAs and tRNAs) and proteins in 10K and EVs were observed when comparing the highest and lowest risk groups (ϵ4/4 and ϵ2/3). Bioinformatic analysis and previous publications indicate a potential regulatory role of these molecules in AD. Discussion For patients with late-stage AD in this study, only a few moderate differences were observed for small RNA and protein profiles between APOE genotypes. Among these, several newly identified 10K and EV-associated molecules may play roles in AD progression. Possibly, larger genotype-related differences exist and are more apparent in or before earlier disease stages

    Large-scale production of extracellular vesicles: Report on the “massivEVs” ISEV workshop

    Get PDF
    Extracellular vesicles (EVs) large-scale production is a crucial point for the translation of EVs from discovery to application of EV-based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET-OPEN projects, “The Extracellular Vesicle Foundry” (evFOUNDRY) and “Extracellular vesicles from a natural source for tailor-made nanomaterials” (VES4US), organized a workshop entitled “massivEVs” to discuss the potential challenges for translation of EV-based products. This report gives an overview of the topics discussed during “massivEVs”, the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    © 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe

    Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - An ISEV position paper

    Get PDF
    The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNAencoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolationmethods, optimisation of methodologies to isolate and characteriseminute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Decoding genetic messages in extracellular vesicles released by immune cells - lessons for biomarker applications

    No full text
    Extracellular vesicles (EV) are 50 – 1000 nanometer-sized membrane-enclosed vesicles that are released by virtually all cells. EV shuttle proteins, lipids and RNA between cells, and thereby contribute to intercellular communication. Changes in the condition of cells, such as during immune-activation or during disease, can lead to changes in the composition of the EV released by these cells and the effects that these EV have on recipient cells. EV in body fluids are in the limelight as disease biomarkers, since they contain molecular information on the (disease)status of their parental cells. It is thought that the RNA content of EV is a ‘snapshot’ of the cellular transcriptome. EV contain various types of non-coding RNA, of which many are involved in the regulation of transcription and translation processes. Of these RNA types, microRNAs have been studied most intensively. Using various immune cells, we investigated whether cellular activation influences the levels of other non-coding RNAs in EV. Besides expected changes in microRNA content, we additionally detected changes in the Y-RNA content of EV of activated immune cells. Our results indicated that Y-RNA may contribute to the communication between immune cells, and that EV from different immune cells contain unique Y-RNA signatures. Furthermore, we found that systemic inflammation leads to changes in EV-associated Y-RNA levels in human plasma. The analysis of Y-RNA signatures in plasma may potentially be used for detection and monitoring of inflammatory conditions such as sepsis and rheumatoid arthritis

    Decoding genetic messages in extracellular vesicles released by immune cells - lessons for biomarker applications

    No full text
    Extracellular vesicles (EV) are 50 – 1000 nanometer-sized membrane-enclosed vesicles that are released by virtually all cells. EV shuttle proteins, lipids and RNA between cells, and thereby contribute to intercellular communication. Changes in the condition of cells, such as during immune-activation or during disease, can lead to changes in the composition of the EV released by these cells and the effects that these EV have on recipient cells. EV in body fluids are in the limelight as disease biomarkers, since they contain molecular information on the (disease)status of their parental cells. It is thought that the RNA content of EV is a ‘snapshot’ of the cellular transcriptome. EV contain various types of non-coding RNA, of which many are involved in the regulation of transcription and translation processes. Of these RNA types, microRNAs have been studied most intensively. Using various immune cells, we investigated whether cellular activation influences the levels of other non-coding RNAs in EV. Besides expected changes in microRNA content, we additionally detected changes in the Y-RNA content of EV of activated immune cells. Our results indicated that Y-RNA may contribute to the communication between immune cells, and that EV from different immune cells contain unique Y-RNA signatures. Furthermore, we found that systemic inflammation leads to changes in EV-associated Y-RNA levels in human plasma. The analysis of Y-RNA signatures in plasma may potentially be used for detection and monitoring of inflammatory conditions such as sepsis and rheumatoid arthritis

    Response to letter to the editor

    No full text
    corecore