169 research outputs found
Proton Magnetic Resonance Spectroscopic Evidence of Glial Effects of Cumulative Lead Exposure in the Adult Human Hippocampus
BACKGROUND: Exposure to lead is known to have adverse effects on cognition in several different populations. Little is known about the underlying structural and functional correlates of such exposure in humans. OBJECTIVES: We assessed the association between cumulative exposure to lead and levels of different brain metabolite ratios in vivo using magnetic resonance spectroscopy (MRS). METHODS: We performed MRS on 15 men selected from the lowest quintile of patella bone lead within the Department of Veterans Affairsâ Normative Aging Study (NAS) and 16 from the highest to assess in the hippocampal levels of the metabolites N-acetylaspartate, myoinositol, and choline, each expressed as a ratio with creatine. Bone lead concentrationsâindicators of cumulative lead exposureâwere previously measured using K-X-ray fluorescence spectroscopy. MRS was performed on the men from 2002 to 2004. RESULTS: A 20-ÎŒg/g bone and 15-ÎŒg/g bone higher patella and tibia bone lead concentrationâthe respective interquartile ranges within the whole NASâwere associated with a 0.04 [95% confidence interval (CI), 0.00â0.08; p = 0.04] and 0.04 (95% CI, 0.00â0.08; p = 0.07) higher myoinositol-to-creatine ratio in the hippocampus. After accounting for patella bone lead declines over time, analyses adjusted for age showed that the effect of a 20-ÎŒg/g bone higher patella bone lead level doubled (0.09; 95% CI, 0.01â0.17; p = 0.03). CONCLUSIONS: Cumulative lead exposure is associated with an increase in the myinositol-to-creatine ratio. These data suggest that, as assessed with MRS, glial effects may be more sensitive than neuronal effects as an indicator of cumulative exposure to lead in adults
Feline immunodeficiency virus decreases cell-cell communication and mitochondrial membrane potential.
The in vitro effects of viral replication on mitochondrial membrane potential (MMP) and gap junctional intercellular communication (GJIC) were evaluated as two parameters of potential cellular injury. Two distinct cell types were infected with the Petaluma strain of feline immunodeficiency virus (FIV). Primary astroglia supported acute FIV infection, resulting in syncytia within 3 days of infection, whereas immortalized Crandell feline kidney (CRFK) cells of epithelial origin supported persistent FIV infection in the absence of an obvious cytopathic effect. An examination of cells under conditions that included an infection rate of more than 90% for either population revealed that the astroglia produced about four times more virus than the CRFK cells. The mitochondrial uptake of the cationic fluorescent dye rhodamine 123 in infected astroglia was less than 45% of that of normal control cells, whereas the MMP of the CRFK cells, which produced about one-fourth as much virus, was 80.8% of that of the normal cells. Cell-cell communication between adjacent cells was determined by the recovery of fluorescence following photobleaching of a single cell. In spite of the lower level of innate cell-cell communication among cultured CRFK cells than among astroglia, viral replication resulted in a 30% decrease in the GJIC of both astroglia and CRFK cells. These studies indicate that cell injury, as defined by an inhibition of MMP and GJIC, can occur as a result of persistent and acute infection with the Petaluma strain of FIV
Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study
An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level initiating event and an ensuing cascade of steps to an adverse outcome with population-level significance. To implement a predictive strategy for ecotoxicology, the multiscale nature of an AOP requires computational models to link salient processes (e.g., in chemical uptake, toxicokinetics, toxicodynamics, and population dynamics). A case study with domoic acid was used to demonstrate strategies and enable generic recommendations for developing computational models in an effort to move toward a toxicity testing paradigm focused on toxicity pathway perturbations applicable to ecological risk assessment. Domoic acid, an algal toxin with adverse effects on both wildlife and humans, is a potent agonist for kainate receptors (ionotropic glutamate receptors whose activation leads to the influx of Na + and Ca 2+ ). Increased Ca 2+ concentrations result in neuronal excitotoxicity and cell death, primarily in the hippocampus, which produces seizures, impairs learning and memory, and alters behavior in some species. Altered neuronal Ca 2+ is a key process in domoic acid toxicity, which can be evaluated in vitro. Furthermore, results of these assays would be amenable to mechanistic modeling for identifying domoic acid concentrations and Ca 2+ perturbations that are normal, adaptive, or clearly toxic. In vitro assays with outputs amenable to measurement in exposed populations can link in vitro to in vivo conditions, and toxicokinetic information will aid in linking in vitro results to the individual organism. Development of an AOP required an iterative process with three important outcomes: a critically reviewed, stressor-specific AOP; identification of key processes suitable for evaluation with in vitro assays; and strategies for model development. Environ. Toxicol. Chem. 2011;30:9â21. © 2010 SETACPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78481/1/373_ftp.pd
- âŠ