175 research outputs found
Prandial states modify the reactivity of the gustatory cortex using gustatory evoked potentials in humans
Previous functional Magnetic Resonance Imaging studies evaluated the role of satiety on cortical taste area activity and highlighted decreased activation in the orbito-frontal cortex when food was eaten until satiation. The modulation of orbito-frontal neurons (secondary taste area) by ad libitum food intake has been associated with the pleasantness of the food's flavor. The insula and frontal operculum (primary taste area) are also involved in reward processing. The aim was to compare human gustatory evoked potentials (GEP) recorded in the primary and secondary gustatory cortices in a fasted state with those after food intake. Fifteen healthy volunteers were enrolled in this observational study. In each of two sessions, two GEP recordings were performed (at 11:00 am and 1:30 pm) in response to sucrose gustatory stimulation, and a sucrose-gustatory threshold was determined. During one session, a standard lunch was provided between the two GEP recordings. During the other session, subjects had nothing to eat. Hunger sensation, wanting, liking, and the perception of the solution's intensity were evaluated with visual analog scales. GEP latencies measured in the Pz (p < 0.001), Cz (p < 0.01), Fz (p < 0.001) recordings (primary taste area) were longer after lunch than in the pre-prandial condition. Fp1 and Fp2 latencies (secondary taste area) tended to be longer after lunch, but the difference was not significant. No difference was observed for the sucrose-gustatory threshold regardless of the session and time. Modifications in the primary taste area activity during the post-prandial period occurred regardless of the nature of the food eaten and could represent the activity of the frontal operculum and insula, which was recently shown to be modulated by gut signals (GLP-1, CCK, ghrelin, or insulin) through vagal afferent neurons or metabolic changes of the internal milieu after nutrient absorption. This trial was registered at clinicalstrials.gov as NCT02472444
Landscape - wildfire interactions in southern Europe: implications for landscape management
ReviewEvery year approximately half a million hectares of land are burned by wildfires in southern Europe,
causing large ecological and socio-economic impacts. Climate and land use changes in the last decades
have increased fire risk and danger. In this paper we review the available scientific knowledge on the
relationships between landscape and wildfires in the Mediterranean region, with a focus on its
application for defining landscape management guidelines and policies that could be adopted in order
to promote landscapes with lower fire hazard. The main findings are that (1) socio-economic drivers
have favoured land cover changes contributing to increasing fire hazard in the last decades, (2) large
wildfires are becoming more frequent, (3) increased fire frequency is promoting homogeneous landscapes
covered by fire-prone shrublands; (4) landscape planning to reduce fuel loads may be successful
only if fire weather conditions are not extreme. The challenges to address these problems and the
policy and landscape management responses that should be adopted are discussed, along with major
knowledge gapsinfo:eu-repo/semantics/publishedVersio
Rare Species Support Vulnerable Functions in High-Diversity Ecosystems
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning
Parasites in food webs: the ultimate missing links
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71414/1/j.1461-0248.2008.01174.x.pd
Mitochondrial Dynamin-Related Protein 1 (DRP1) translocation in response to cerebral glucose is impaired in a rat model of early alteration in hypothalamic glucose sensing
OBJECTIVE: Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS: Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS: Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS: A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.RÎle des connexines astrocytaires dans le mécanisme de détection hypothalamique du glucose : implication sur le contrÎle nerveux du métabolisme énergétiqu
Sustaining rare marine microorganisms: macroorganisms as repositories and dispersal agents of microbial diversity
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism-microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members
The status and challenge of global fire modelling
Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP
Recommended from our members
The status and challenge of global fire modelling
Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP
Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments
In mountainous areas such as the southern Appalachians USA, riparian zones are difficult to define. Vegetation is a commonly used riparian indicator and plays a key role in protecting water resources, but adequate knowledge of floristic responses to riparian disturbances is lacking. Our objective was to quantify changes in stand-level floristic diversity of riparian plant communities before (2004) and two, three, and seven years after shelterwood harvest using highlead cable-yarding and with differing no cut buffer widths of 0 m, 10 m, and 30 m distance from the stream edge. An unharvested reference stand was also studied for comparison. We examined: (1) differences among treatment sites using a mixed linear model with repeated measures; (2) multivariate relationships between ground-layer species composition and environmental variables (soil water content, light transmittance, tree basal area, shrub density, and distance from stream) using nonmetric multidimensional scaling; and (3) changes in species composition over time using a multi-response permutation procedure. We hypothesized that vegetation responses (i.e., changes in density, species composition, and diversity across the hillslope) will be greatest on harvest sites with an intermediate buffer width (10-m buffer) compared to more extreme (0-m buffer) and less extreme (30-m buffer and no-harvest reference) disturbance intensities. Harvesting initially reduced overstory density and basal area by 83% and 65%, respectively, in the 0-m buffer site; reduced by 50% and 74% in the 10-m buffer site; and reduced by 45% and 29% in the 30-m buffer site. Both the 0-m and 10-m buffer sites showed increased incident light variability across the hillslope after harvesting; whereas, there was no change in the 30-m and reference sites over time. We found significant changes in midstory and ground-layer vegetation in response to harvesting with the greatest responses on the 10-m buffer site, supporting our hypotheses that responses will be greatest on sites with intermediate disturbance. Ground-layer species composition differed significantly over time in the 0-m buffer and 10-m buffer sites (both P \u3c 0.0001), but did not change in the 30-m buffer and reference sites (both P \u3e 0.100). Average compositional dissimilarity increased after seven years, indicating greater within stand heterogeneity (species diversity) after harvesting. These vegetation recovery patterns provide useful information for evaluating management options in riparian zones in the southern Appalachians
- âŠ