113 research outputs found

    A new wildland fire danger index for a Mediterranean region and some validation aspects

    Full text link
    Wildland fires are the main cause of tree mortality in Mediterranean Europe and a major threat to Spanish forests. This paper focuses on the design and validation of a new wildland fire index especially adapted to a Mediterranean Spanish region. The index considers ignition and spread danger components. Indicators of natural and human ignition agents, historical occurrence, fuel conditions and fire spread make up the hierarchical structure of the index. Multi-criteria methods were used to incorporate experts¿ opinion in the process of weighting the indicators and to carry out the aggregation of components into the final index, which is used to map the probability of daily fire occurrence on a 0.5-km grid. Generalised estimating equation models, which account for possible correlated responses, were used to validate the index, accommodating its values onto a larger scale because historical records of daily fire occurrence, which constitute the dependent variable, are referred to cells on a 10-km grid. Validation results showed good index performance, good fit of the logistic model and acceptable discrimination power. Therefore, the index will improve the ability of fire prevention services in daily allocation of resources.The authors acknowledge the support received from the Ministry of Science and Innovation through the research project Modelling and Optimisation Techniques for a Sustainable Development, Ref. EC02008-05895-C02-01/ECON.Vicente López, FJD.; Crespo Abril, F. (2012). A new wildland fire danger index for a Mediterranean region and some validation aspects. International Journal of Wildland Fire. 21(8):1030-1041. https://doi.org/10.1071/WF11046S10301041218Aguado, I., Chuvieco, E., Borén, R., & Nieto, H. (2007). Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. International Journal of Wildland Fire, 16(4), 390. doi:10.1071/wf06136Andrews, P. L., Loftsgaarden, D. O., & Bradshaw, L. S. (2003). Evaluation of fire danger rating indexes using logistic regression and percentile analysis. International Journal of Wildland Fire, 12(2), 213. doi:10.1071/wf02059Bradstock, R. A., Cohn, J. S., Gill, A. M., Bedward, M., & Lucas, C. (2009). Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. International Journal of Wildland Fire, 18(8), 932. doi:10.1071/wf08133Buizza, R., & Hollingsworth, A. (2002). Storm prediction over Europe using the ECMWF Ensemble Prediction System. Meteorological Applications, 9(3), 289-305. doi:10.1017/s1350482702003031Carmel, Y., Paz, S., Jahashan, F., & Shoshany, M. (2009). Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management, 257(1), 370-377. doi:10.1016/j.foreco.2008.09.039Castedo-Dorado, F., Rodríguez-Pérez, J. R., Marcos-Menéndez, J. L., & Álvarez-Taboada, M. F. (2011). Modelling the probability of lightning-induced forest fire occurrence in the province of León (NW Spain). Forest Systems, 20(1), 95. doi:10.5424/fs/2011201-9409Catry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18(8), 921. doi:10.1071/wf07123CHUVIECO, E., & SALAS, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International journal of geographical information systems, 10(3), 333-345. doi:10.1080/02693799608902082Chuvieco, E., Cocero, D., Riaño, D., Martin, P., Martı́nez-Vega, J., de la Riva, J., & Pérez, F. (2004). Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92(3), 322-331. doi:10.1016/j.rse.2004.01.019Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., … Zamora, R. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221(1), 46-58. doi:10.1016/j.ecolmodel.2008.11.017Danson, F. M., & Bowyer, P. (2004). Estimating live fuel moisture content from remotely sensed reflectance. Remote Sensing of Environment, 92(3), 309-321. doi:10.1016/j.rse.2004.03.017Dasgupta, S., Qu, J. J., & Hao, X. (2006). Design of a Susceptibility Index for Fire Risk Monitoring. IEEE Geoscience and Remote Sensing Letters, 3(1), 140-144. doi:10.1109/lgrs.2005.858484Fairbrother, A., & Turnley, J. G. (2005). Predicting risks of uncharacteristic wildfires: Application of the risk assessment process. Forest Ecology and Management, 211(1-2), 28-35. doi:10.1016/j.foreco.2005.01.026Finney, M. A. (2005). The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management, 211(1-2), 97-108. doi:10.1016/j.foreco.2005.02.010Gouma, V., & Chronopoulou-Sereli, A. (1998). Wildland Fire Danger Zoning - a Methodology. International Journal of Wildland Fire, 8(1), 37. doi:10.1071/wf9980037Hernandez-Leal, P. A., Arbelo, M., & Gonzalez-Calvo, A. (2006). Fire risk assessment using satellite data. Advances in Space Research, 37(4), 741-746. doi:10.1016/j.asr.2004.12.053Li, L.-M., Song, W.-G., Ma, J., & Satoh, K. (2009). Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. International Journal of Wildland Fire, 18(6), 640. doi:10.1071/wf07136Maingi, J. K., & Henry, M. C. (2007). Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. International Journal of Wildland Fire, 16(1), 23. doi:10.1071/wf06007Martell, D. L., Otukol, S., & Stocks, B. J. (1987). A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Canadian Journal of Forest Research, 17(5), 394-401. doi:10.1139/x87-068Martínez, J., Vega-Garcia, C., & Chuvieco, E. (2009). Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), 1241-1252. doi:10.1016/j.jenvman.2008.07.005Moffett, A., Garson, J., & Sarkar, S. (2005). MultCSync: a software package for incorporating multiple criteria in conservation planning. Environmental Modelling & Software, 20(10), 1315-1322. doi:10.1016/j.envsoft.2004.10.001Nieto, H., Aguado, I., Chuvieco, E., & Sandholt, I. (2010). Dead fuel moisture estimation with MSG–SEVIRI data. Retrieval of meteorological data for the calculation of the equilibrium moisture content. Agricultural and Forest Meteorology, 150(7-8), 861-870. doi:10.1016/j.agrformet.2010.02.007Noble, B. F., & Christmas, L. M. (2007). Strategic Environmental Assessment of Greenhouse Gas Mitigation Options in the Canadian Agricultural Sector. Environmental Management, 41(1), 64-78. doi:10.1007/s00267-007-9017-yNúñez-Regueira, L. (1997). Calorific values and flammability of forest species in galicia. Continental high mountainous and humid Atlantic zones. Bioresource Technology, 61(2), 111-119. doi:10.1016/s0960-8524(97)00053-9Padilla, M., & Vega-García, C. (2011). On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. International Journal of Wildland Fire, 20(1), 46. doi:10.1071/wf09139Pendergast, J. F., Gange, S. J., Newton, M. A., Lindstrom, M. J., Palta, M., & Fisher, M. R. (1996). A Survey of Methods for Analyzing Clustered Binary Response Data. International Statistical Review / Revue Internationale de Statistique, 64(1), 89. doi:10.2307/1403425Pew, K. ., & Larsen, C. P. . (2001). GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. Forest Ecology and Management, 140(1), 1-18. doi:10.1016/s0378-1127(00)00271-1Podur, J., Martell, D. L., & Csillag, F. (2003). Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecological Modelling, 164(1), 1-20. doi:10.1016/s0304-3800(02)00386-1Preisler, H. K., Brillinger, D. R., Burgan, R. E., & Benoit, J. W. (2004). Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13(2), 133. doi:10.1071/wf02061Preisler, H. K., Chen, S.-C., Fujioka, F., Benoit, J. W., & Westerling, A. L. (2008). Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices. International Journal of Wildland Fire, 17(3), 305. doi:10.1071/wf06162Romero-Calcerrada, R., Novillo, C. J., Millington, J. D. A., & Gomez-Jimenez, I. (2008). GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology, 23(3), 341-354. doi:10.1007/s10980-008-9190-2Saaty, T. L. (1987). RANK GENERATION, PRESERVATION, AND REVERSAL IN THE ANALYTIC HIERARCHY DECISION PROCESS. Decision Sciences, 18(2), 157-177. doi:10.1111/j.1540-5915.1987.tb01514.xSahin, Y. G., & Ince, T. (2009). Early Forest Fire Detection Using Radio-Acoustic Sounding System. Sensors, 9(3), 1485-1498. doi:10.3390/s90301485López, A. S., San-Miguel-Ayanz, J., & Burgan, R. E. (2002). Integration of satellite sensor data, fuel type maps and meteorological observations for evaluation of forest fire risk at the pan-European scale. International Journal of Remote Sensing, 23(13), 2713-2719. doi:10.1080/01431160110107761Sharples, J. J., McRae, R. H. D., Weber, R. O., & Gill, A. M. (2009). A simple index for assessing fire danger rating. Environmental Modelling & Software, 24(6), 764-774. doi:10.1016/j.envsoft.2008.11.004Stocks, B. J., Lynham, T. J., Lawson, B. D., Alexander, M. E., Wagner, C. E. V., McAlpine, R. S., & Dubé, D. E. (1989). The Canadian Forest Fire Danger Rating System: An Overview. The Forestry Chronicle, 65(6), 450-457. doi:10.5558/tfc65450-6Sturtevant, B. R., & Cleland, D. T. (2007). Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. International Journal of Wildland Fire, 16(4), 398. doi:10.1071/wf06023Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. doi:10.1126/science.3287615Vadrevu, K. P., Eaturu, A., & Badarinath, K. V. S. (2009). Fire risk evaluation using multicriteria analysis—a case study. Environmental Monitoring and Assessment, 166(1-4), 223-239. doi:10.1007/s10661-009-0997-3Vasilakos, C., Kalabokidis, K., Hatzopoulos, J., Kallos, G., & Matsinos, Y. (2007). Integrating new methods and tools in fire danger rating. International Journal of Wildland Fire, 16(3), 306. doi:10.1071/wf05091Verde, J. C., & Zêzere, J. L. (2010). Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and Earth System Science, 10(3), 485-497. doi:10.5194/nhess-10-485-2010Wotton, B. M., & Martell, D. L. (2005). A lightning fire occurrence model for Ontario. Canadian Journal of Forest Research, 35(6), 1389-1401. doi:10.1139/x05-071Yebra, M., Chuvieco, E., & Riaño, D. (2008). Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology, 148(4), 523-536. doi:10.1016/j.agrformet.2007.12.00

    Landscape - wildfire interactions in southern Europe: implications for landscape management

    Get PDF
    ReviewEvery year approximately half a million hectares of land are burned by wildfires in southern Europe, causing large ecological and socio-economic impacts. Climate and land use changes in the last decades have increased fire risk and danger. In this paper we review the available scientific knowledge on the relationships between landscape and wildfires in the Mediterranean region, with a focus on its application for defining landscape management guidelines and policies that could be adopted in order to promote landscapes with lower fire hazard. The main findings are that (1) socio-economic drivers have favoured land cover changes contributing to increasing fire hazard in the last decades, (2) large wildfires are becoming more frequent, (3) increased fire frequency is promoting homogeneous landscapes covered by fire-prone shrublands; (4) landscape planning to reduce fuel loads may be successful only if fire weather conditions are not extreme. The challenges to address these problems and the policy and landscape management responses that should be adopted are discussed, along with major knowledge gapsinfo:eu-repo/semantics/publishedVersio

    Critical Thinking for the Modern Muslim Woman Psychology Student: A Summer in Islamabad

    No full text
    Teaching critical thinking at the International Islamic University - Islamabad (IIU-I) in 2008 gave me a chance to reflect on religion and politics, leftism and anti-imperialism, and to learn more about the region. Some reflections for radical teachers

    A Short Course on Development in “Post-conflict” Congo

    No full text
    It was during my brief teaching in Bukavu, in the east of the Democratic Republic of Congo (DRC), that I came to understand the power of neoliberalism in shaping the narrative of DRC’s past, present, and future. While my students argued that the DRC's problems stemmed from local corruption, not ongoing colonialism, I was trying to present a more diverse story of development, one that cracks in the neoliberal narrative and lets democracy and the public sector play a role

    Spatial and temporal patterns of forest fire activity in Canada

    No full text
    grantor: University of TorontoFire and weather archive data for the province of Ontario and Canada were investigated using spatial statistical and time series analysis methodologies. Spatial point pattern analysis was used to investigate spatial patterns of lightning-caused fire occurrence in Ontario. Lightning-caused forest fires were found to be spatially clustered. Evidence was found that this clustering follows the spatial pattern of lightning strikes on dry weather days. Time series analysis was used to investigate cycles and trends in annual number of fires and area burned in Ontario and Canada from 1917 to the present. A 2-year autocorrelation was found in fire occurrence and a 14-year autocorrelation in annual area burned. Statistical quality control methods were used to investigate long term shifts in the mean and variance of annual number of fires and annual area burned in Ontario and Canada. Small significant increases in number of fires and area burned were found.M.Sc.F
    corecore