522 research outputs found

    Food-web-based comparison of the drivers of helminth parasite species richness in coastal fish and bird definitive hosts

    Get PDF
    Studies on the factors determining parasite richness in hosts are typically performedusing data compiled for various sets of species from disparate habitats. However, parasite transmissionis embedded within local trophic networks, and proper comparisons among host speciesof the drivers of parasite richness should ideally be conducted among hosts belonging to the samelocal network. Here, we used data from 6 well-resolved coastal food webs that include parasites toinvestigate patterns and drivers of species richness of trophically transmitted helminths in coastalfish and bird definitive hosts. We first investigated whether previous notions that birds harbourmore trophically transmitted parasite species than fish hold true for food-web-based comparisons;then we investigated the roles of host prey range, trophic level and body size in driving parasiterichness patterns in coastal birds and fish. Our analyses indicated that bird hosts, on average, harbouredhigher parasite richness than fish hosts. While there was no consistent driver of parasiterichness at the level of entire food webs, host prey range and host trophic level were positively correlatedwith parasite richness in birds within individual food webs. For fish hosts, the effect of hostprey range was less consistent and trophic level had no effect on parasite richness. Host body sizedid not affect parasite richness for either host type. These results suggest that host prey range andtrophic level seem to be more consistent drivers of parasite richness for coastal bird than for fishhosts

    Prey preferences of invasive (Hemigrapsus sanguineus, H. takanoi) and native (Carcinus maenas) intertidal crabs in the European Wadden Sea

    Get PDF
    Invasive predators can have wide-ranging effects on invaded ecosystems and identifying the prey spectra and preferences of invaders are important steps in assessing their potential impacts on native biota. In this study, we investigated prey preferences of two invasive crab species (Hemigrapsus sanguineus and Hemigrapsus takanoi) that recently invaded Europe's shores and compared them with preferences of native shore crabs (Carcinus maenas) of similar size. In laboratory experiments, all three crab species preferred animal over algal prey. In general, sessile mussels (Mytilus edulis) were preferred over motile amphipods (Gammarus locusta) by all three crab species but amphipod predation was lower in the invasive compared with the native crabs. For the two invasive crab species, this pattern was the same in treatments where prey was offered separately (no-choice treatments) or simultaneously (choice treatments), while for the native crabs, mussel preference disappeared in choice treatments. The general preference of mussels by all three crab species suggests that local invasions of crabs most likely lead to increased competition among crabs. In addition, given that local densities of invasive crabs are often much higher than those of native crabs, predation pressure on native mussels can be expected to strongly increase at invaded sites. In contrast, local predation pressure on amphipods may be less affected by the crab invasions. Further field studies are needed to establish the magnitude of competition and predation pressure exerted by the invaders under natural conditions

    Large-scale patterns in trematode richness and infection levels in marine crustacean hosts

    Get PDF
    Little is known about the patterns of variation in parasitism in marine hosts. Trematodes, the dominant parasites in intertidal systems, are transmitted from their first intermediate hosts (snails) to a range of second intermediate hosts, including crustaceans. Using published studies of trematode infections in crustacean hosts, we investigated general patterns of variation in trematode species richness and infection levels (i.e. percentage of hosts infected and mean number of individual parasites per host). Since the production and release of infective stages in snails is strongly temperature dependent, we also investigated a potential decrease in trematode infection levels with increasing latitude (as a proxy for decreasing temperature). Trematode species richness in the crustacean hosts was generally low (mostly 1 or 2), and infection levels were moderate. However, there were differences among taxa in some groups, particularly among brachyuran crabs, which showed significantly higher values than in other groups. For amphipods, which were the only well-studied group across a large range of latitudes, we found negative correlations between latitude and the trematode species richness or measures of infection level considered here. These relationships persisted after correction of the potentially confounding effects of sampling effort, host body size and host generic identity (as a control for phylogenetic influences). We discuss these findings in light of environmental mediation of parasite transmission, in particular with respect to the probably fundamental role of temperature in driving the output of trematode infective stages in marine systems

    Invasive oysters as new hosts for native shell-boring polychaetes: Using historical shell collections and recent field data to investigate parasite spillback in native mussels in the Dutch Wadden Sea

    Get PDF
    Biological invasions can have manifold effects on native biota, including impacts on species interactions in invaded ecosystems. Among those are effects on parasite-host interactions, for example in cases where invaders serve as a new host for native parasites, leading to an amplification of the parasite population which may ultimately result in increased infection levels in the original native hosts (parasite spillback). In this study, we investigated the potential spillback of the native shell-boring polychaete Polydora ciliata from invasive Pacific oysters (Crassostrea (Magallana) gigas) to native mussels (Mytilus edulis) in the Dutch Wadden Sea. A field survey in the intertidal revealed that the majority of P. ciliata can nowadays be found in the shells of live but also dead Pacific oysters and much less in shells of other potential host species: mussels and periwinkles (Littorina littorea). Using a unique historical shell collection based on long-term sampling programmes in the intertidal and subtidal of the western Dutch Wadden Sea, we compared P. ciliata infections in mussels before and after the invasion of the Pacific oyster by means of x-ray scans. Both for the intertidal and subtidal, we did not detect differences in prevalence of P. ciliata in mussels between pre- and post-invasion periods. This suggests that the invasion of the Pacific oyster may not have caused a strong spillback to mussels regarding P. ciliata and thus the invasion probably had little indirect infection-mediated effects on the condition and fitness of native mussels. Instead, the acquisition of native P. ciliata by the invasive oysters suggests that they may themselves be affected by the new infections and this may warrant further research

    Inventory and comparison of abundance of parasitic copepods on fish hosts in the western Wadden Sea (North Sea) between 1968 and 2010

    Get PDF
    A conspicuous part of the parasite fauna of marine fish are ectoparasites, which attach mainly to the fins or gills. The abundant copepods have received much interest due to their negative effects on hosts. However, for many localities the copepod fauna of fish is still poorly known, and we know little about their temporal stability as long-term observations are largely absent. Our study provides the first inventory of ectoparasitic copepods on fish from the western Wadden Sea (North Sea) based on field data from 1968 and 2010 and additional unpublished notes. In total, 47 copepod parasite species have been recorded on 52 fish host species to date. For two copepod species parasitizing the European flounder (Platichthys flesus), a quantitative comparison of infection levels between 1968 and 2010 was possible. Whereas Acanthochondria cornuta did not show a change in the relationship between host size and infection levels, Lepeophtheirus pectoralis shifted towards the infection of smaller hosts, with higher infection levels in 2010 compared to 1968. These differences probably reflect the biology of the species and the observed decrease in abundance and size of flounders during the last decades. The skin-infecting L. pectoralis can probably compensate for dwindling host abundance by infecting smaller fish and increasing its abundance per given host size. In contrast, the gill cavity inhabiting A. cornuta probably faces a spatial constraint (fixed number of gill arches), thus limiting its abundance and setting a minimum for the host size necessary for infections

    Freshening rather than warming drives trematode transmission from periwinkles to mussels

    Get PDF
    In the Western Baltic Sea, climate change is happening at much faster rate than in most other seas and organisms are additionally exposed to a steep and variable salinity gradient. Climate change has previously been shown to affect parasite transmission in other marine ecosystems, yet little is known about potential effects of warming and desalination on parasite–host interactions. In laboratory experiments, we determined the combined effects of projected seawater warming and freshening on the emergence, activity, survival, and infectivity of cercariae (free-swimming infectious stage) of the trematode Himasthla elongata (Mehlis 1831), shed from its first intermediate host, the periwinkle Littorina littorea (Linnaeus 1758), in the Baltic Sea. We also assessed the susceptibility of the second intermediate host, the mussel Mytilus edulis Linnaeus, 1758, to cercarial infections. Generally, salinity was the main driver, particularly of cercarial activity, infectivity, and mussel susceptibility to infection. At the lowest salinity (13), cercariae were 50% less active compared to the highest salinity (19). Infection success and host susceptibility followed a similar pattern, with 47% and 43% less metacercariae (encysted stage) present at salinity 13 than at salinity 19, respectively. In contrast, effects of simulated warming were found only for cercarial survival, with cercarial longevity being higher at 19 than at 23 Â°C. No significant interactions between temperature and salinity were found. In contrast to the literature, the results suggest that a climate change-driven freshening (partly also warming) may lead to a general decline of marine trematodes, with possible beneficial effects for the involved hosts

    Biological invasions and host–parasite coevolution: different coevolutionary trajectories along separate parasite invasion fronts

    Get PDF
    Host–parasite coevolution has rarely been observed in natural systems. Its study often relies on microparasitic infections introducing a potential bias in the estimation of the evolutionary change of host and parasite traits. Using biological invasions as a tool to study host–parasite coevolution in nature can overcome these biases. We demonstrate this with a cross-infection experiment in the invasive macroparasite <i>Mytilicola intestinalis</i> and its bivalve host, the blue mussel <i>Mytilus edulis</i>. The invasion history of the parasite is well known for the southeastern North Sea and is characterised by two separate invasion fronts that reached opposite ends of the Wadden Sea (i.e. Texel, The Netherlands and Sylt, Germany) in a similar time frame. The species’ natural history thus makes this invasion an ideal natural experiment to study host–parasite coevolution in nature. We infected hosts from Texel, Sylt and Kiel (Baltic Sea, where the parasite is absent) with parasites from Texel and Sylt, to form sympatric, allopatric and naĂ¯ve infestation combinations, respectively. We measured infection rate, host condition and parasite growth to show that sympatric host–parasite combinations diverged in terms of pre- and post-infection traits within <100 generations since their introduction. Texel parasites were more infective and more efficient at exploiting the host’s resources. Hosts on Texel, on the other hand, evolved resistance to infection, whereas hosts on Sylt may have evolved tolerance. This illustrates that different coevolutionary trajectories can evolve along separate invasion fronts of the parasite, highlighting the use of biological invasions in studies of host–parasite coevolution in nature

    Freshening rather than warming drives trematode transmission from periwinkles to mussels

    Get PDF
    In the Western Baltic Sea, climate change is happening at much faster rate than in most other seas and organisms are additionally exposed to a steep and variable salinity gradient. Climate change has previously been shown to affect parasite transmission in other marine ecosystems, yet little is known about potential effects of warming and desalination on parasite–host interactions. In laboratory experiments, we determined the combined effects of projected seawater warming and freshening on the emergence, activity, survival, and infectivity of cercariae (free-swimming infectious stage) of the trematode Himasthla elongata (Mehlis 1831), shed from its first intermediate host, the periwinkle Littorina littorea (Linnaeus 1758), in the Baltic Sea. We also assessed the susceptibility of the second intermediate host, the mussel Mytilus edulis Linnaeus, 1758, to cercarial infections. Generally, salinity was the main driver, particularly of cercarial activity, infectivity, and mussel susceptibility to infection. At the lowest salinity (13), cercariae were 50% less active compared to the highest salinity (19). Infection success and host susceptibility followed a similar pattern, with 47% and 43% less metacercariae (encysted stage) present at salinity 13 than at salinity 19, respectively. In contrast, effects of simulated warming were found only for cercarial survival, with cercarial longevity being higher at 19 than at 23 °C. No significant interactions between temperature and salinity were found. In contrast to the literature, the results suggest that a climate change-driven freshening (partly also warming) may lead to a general decline of marine trematodes, with possible beneficial effects for the involved hosts
    • …
    corecore