5 research outputs found

    The Second European Service Module (ESM-2) Evolutions, Production and Challenges

    Get PDF
    This paper presents an overview of the Second European Service Module (ESM-2), the second in a series of European Service Modules produced as part of the Barter agreement between NASA and ESA for the Orion Program. The European Industrial consortium is led by the ESA prime contractor Airbus Defence and Space in Bremen. ESA and Airbus signed the ESM-2 contract on 16 February 2017, for this key element of the Orion Exploration Mission 2 (EM-2). EM-2 is the first crewed mission for Orion and will take astronauts farther into the solar system than humanity has ever travelled. EM-2 will also be a historic mission for Europe, as the ESM-2 will be the first European spacecraft to be part of a human transportation system carrying humans beyond low Earth orbit. ESM-2 is mainly a recurring production following ESM-1. Nevertheless, there are a number of important changes being implemented, for example, to incorporate upgrades to further enhance safety and reliability. The challenging delivery schedule for ESM-2 has driven the need to commence manufacturing prior to completion of the qualification on ESM-1. In addition, some requirement deviations and non-compliances approved for ESM-1 have resulted in modifications for ESM-2. In order to manage the competing constraints effectively, the ESM-2 Team has put in place a number of novel approaches to manage schedule, risk, and technical changes. Airbus has set up multi-functional teams according to an approach known as "Major Spacecraft Deliveries" consisting of quality assurance, engineering and procurement. The risk of starting manufacturing prior to qualification is managed through a special risk share agreement. This agreement necessitates rigorous risk reviews across the board for all manufacturing, assembly, integration and test milestones. The ESM-2 changes are managed by Configuration Management, but Airbus has also introduced the Technical Baseline Matrix to provide a transparent top-level overview of the changes from ESM-1 to ESM-2. The tool provides the basis for ESM-2 design and development needs, decisions, as well as the input for the Orion EM-2 Critical Design Review (CDR). The main technical evolutions, status of the production and the novel management approaches for ESM-2 are presented and discussed in the paper

    Examination of the Structural Response of the Orion European Service Module to Reverberant and Direct Field Acoustic Testing

    Get PDF
    The NASA Orion Multi-Purpose Crew Vehicle (MPCV), comprised of the Service Module, the Crew Module, and the Launch Abort System, is the next generation human spacecraft designed and built for deep space exploration. Orion will launch on NASAs new heavy-lift rocket, the Space Launch System. The European Space Agency (ESA) is responsible for providing the propulsion sub-assembly of the Service Module to NASA, called the European Service Module (ESM). The ESM is being designed and built by Airbus Safran Launchers for ESA. Traditionally, NASA has utilized reverberant acoustic testing for qualification of spaceflight hardware. The ESM Structural Test Article (E-STA) was tested at the NASA Plum Brook Stations (PBS) Reverberant Acoustic Test Facility in April-May 2016. However, Orion is evaluating an alternative acoustic test method, using direct field acoustic excitation, for the MPCVs Service Module and Crew Module. Lockheed Martin is responsible for the Orion proof-of-concept direct field acoustic test program. The E-STA was exposed to direct field acoustic testing at NASA PBS in February 2017. This paper compares the dynamic response of the E-STA structure and its components to both the reverberant and direct field acoustic test excitations. Advantages and disadvantages of direct field acoustic test excitation method are discussed

    Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    Get PDF
    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishingverifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world
    corecore