99 research outputs found
Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model
We devise a computational approach to the Hubbard model that captures the
strong coupling dynamics arising when the Fermi level is at a Van Hove
singularity in the density of states. We rely on an approximate degeneracy
among the many-body states accounting for the main instabilities of the system
(antiferromagnetism, d-wave superconductivity). The Fermi line turns out to be
deformed in a manner consistent with the pinning of the Fermi level to the Van
Hove singularity. For a doping rate , the ground state is
characterized by d-wave symmetry, quasiparticles gapped only at the
saddle-points of the band, and a large peak at zero momentum in the d-wave
pairing correlations.Comment: 4 pages, 2 Postscript figure
Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model
The zero temperature transition from a paramagnetic metal to a paramagnetic
insulator is investigated in the Dynamical Mean Field Theory for the Hubbard
model. The self-energy of the effective impurity Anderson model (on which the
Hubbard model is mapped) is calculated using Wilson's Numerical Renormalization
Group method. Results for quasiparticle weight, spectral function and
self-energy are discussed for Bethe and hypercubic lattice. In both cases, the
metal-insulator transition is found to occur via the vanishing of a
quasiparticle resonance which appears to be isolated from the Hubbard bands.Comment: 4 pages, 3 eps-figures include
Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions
The nature of the Mott-Hubbard metal-insulator transition in the
infinite-dimensional Hubbard model is investigated by Quantum Monte Carlo
simulations down to temperature T=W/140 (W=bandwidth). Calculating with
significantly higher precision than in previous work, we show that the
hysteresis below T_{IPT}\simeq 0.022W, reported in earlier studies, disappears.
Hence the transition is found to be continuous rather than discontinuous down
to at least T=0.325T_{IPT}. We also study the changes in the density of states
across the transition, which illustrate that the Fermi liquid breaks down
before the gap opens.Comment: 4 pages, 4 eps-figures using epsf.st
Finite temperature numerical renormalization group study of the Mott-transition
Wilson's numerical renormalization group (NRG) method for the calculation of
dynamic properties of impurity models is generalized to investigate the
effective impurity model of the dynamical mean field theory at finite
temperatures. We calculate the spectral function and self-energy for the
Hubbard model on a Bethe lattice with infinite coordination number directly on
the real frequency axis and investigate the phase diagram for the Mott-Hubbard
metal-insulator transition. While for T<T_c approx 0.02W (W: bandwidth) we find
hysteresis with first-order transitions both at U_c1 (defining the insulator to
metal transition) and at U_c2 (defining the metal to insulator transition), at
T>T_c there is a smooth crossover from metallic-like to insulating-like
solutions.Comment: 10 pages, 9 eps-figure
Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures
The single band Hubbard and the two band Periodic Anderson Hamiltonians have
traditionally been applied to rather different physical problems - the Mott
transition and itinerant magnetism, and Kondo singlet formation and scattering
off localized magnetic states, respectively. In this paper, we compare the
magnetic and charge correlations, and spectral functions, of the two systems.
We show quantitatively that they exhibit remarkably similar behavior, including
a nearly identical topology of the finite temperature phase diagrams at
half-filling. We address potential implications of this for theories of the
rare earth ``volume collapse'' transition.Comment: 4 pages (RevTeX) including 4 figures in 7 eps files; as to appear in
Phys. Rev. Let
Iterated perturbation theory for the attractive Holstein and Hubbard models
A strictly truncated (weak-coupling) perturbation theory is applied to the
attractive Holstein and Hubbard models in infinite dimensions. These results
are qualified by comparison with essentially exact Monte Carlo results. The
second order iterated perturbation theory is shown to be quite accurate in
calculating transition temperatures for retarded interactions, but is not as
accurate for the self energy or the irreducible vertex functions themselves.
Iterated perturbation theory is carried out thru fourth order for the Hubbard
model. The self energy is quite accurately reproduced by the theory, but the
vertex functions are not. Anomalous behavior occurs near half filling because
the iterated perturbation theory is not a conserving approximation. (REPLACED
WITH UUENCODED FIGURES AT THE END. THE TEXT IS UNCHANGED)Comment: 27 pages, RevTex (figures appended at end
Lung Epithelial Injury by B. Anthracis Lethal Toxin Is Caused by MKK-Dependent Loss of Cytoskeletal Integrity
Bacillus anthracis lethal toxin (LT) is a key virulence factor of anthrax and contributes significantly to the in vivo pathology. The enzymatically active component is a Zn2+-dependent metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MKKs). Using ex vivo differentiated human lung epithelium we report that LT destroys lung epithelial barrier function and wound healing responses by immobilizing the actin and microtubule network. Long-term exposure to the toxin generated a unique cellular phenotype characterized by increased actin filament assembly, microtubule stabilization, and changes in junction complexes and focal adhesions. LT-exposed cells displayed randomly oriented, highly dynamic protrusions, polarization defects and impaired cell migration. Reconstitution of MAPK pathways revealed that this LT-induced phenotype was primarily dependent on the coordinated loss of MKK1 and MKK2 signaling. Thus, MKKs control fundamental aspects of cytoskeletal dynamics and cell motility. Even though LT disabled repair mechanisms, agents such as keratinocyte growth factor or dexamethasone improved epithelial barrier integrity by reducing cell death. These results suggest that co-administration of anti-cytotoxic drugs may be of benefit when treating inhalational anthrax
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transientâs position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- âŠ