96 research outputs found

    Eastern Boundary Circulation and Hydrography Off Angola: Building Angolan Oceanographic Capacities: Building Angolan Oceanographic Capacities

    Get PDF
    The eastern boundary region off Angola encompasses a highly productive ecosystem important for the food security of the coastal population. The fish-stock distribution, however, undergoes large variability on intraseasonal, interannual, and longer time scales. These fluctuations are partly associated with large-scale warm anomalies that are often forced remotely from the equatorial Atlantic and propagate southward, reaching the Benguela upwelling off Namibia. Such warm events, named Benguela Niños, occurred in 1995 and in 2011. Here we present results from an underexplored extensive in situ dataset that was analyzed in the framework of a capacity-strengthening effort. The dataset was acquired within the Nansen Programme executed by the Food and Agriculture Organization of the United Nations and funded by the Norwegian government. It consists of hydrographic and velocity data from the Angolan continental margin acquired biannually during the main downwelling and upwelling seasons over more than 20 years. The mean seasonal changes of the Angola Current from 6° to 17°S are presented. During austral summer the southward Angola Current is concentrated in the upper 150 m. It strengthens from north to south, reaching a velocity maximum just north of the Angola Benguela Front. During austral winter the Angola Current is weaker, but deeper reaching. While the southward strengthening of the Angola Current can be related to the wind forcing, its seasonal variability is most likely explained by coastally trapped waves. On interannual time scales, the hydrographic data reveal remarkable variability in subsurface upper-ocean heat content. In particular, the 2011 Benguela Niño was preceded by a strong subsurface warming of about 2 years’ duration

    Seasonal Variability of the Mauritania Current and Hydrography at 18°N

    Get PDF
    Extensive field campaigns in the Mauritanian upwelling region between 2005 and 2016 provide the database for analyzing the seasonal variability of the eastern boundary circulation (EBC) and associated water mass distribution at 18°N. The data set includes shipboard upper ocean current, hydrographic, and oxygen measurements from nine research cruises conducted during upwelling (December to April) and relaxation (May to July) seasons. During the upwelling season, the EBC closely resembles a classical eastern boundary current regime, with a poleward undercurrent flowing beneath an equatorward coastal jet. In contrast, elevated poleward flow exceeding 30 cm/s and extending from the surface down to 250-m depth is observed during the relaxation season. The pronounced seasonal variability of the across-shore structure of the EBC can be related to local wind forcing and is in general agreement with Sverdrup balance. The EBC transport is correlated to the wind stress curl leading the transport by 7 days. The short lead time suggests a fast response of locally forced waves adjusting the EBC to wind forcing. The seasonal and vertical water mass distribution is presented based on hydrographic observations. The meridional oxygen distribution and corresponding water mass partitioning into South and North Atlantic Central Water masses reveal a possible northerly ventilation pathway in the deeper layers of the central water stratum. Our results suggest that the poleward surface flow and the poleward undercurrent both are a consequence of the cyclonic wind stress curl forcing and thus propose to name it the Mauritania Current

    The tropical Atlantic observing system

    Get PDF
    The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system
    corecore