21 research outputs found

    Ion-Irradiation-Induced Carbon Nanostructures in Optoelectronic Polymer Materials

    Get PDF
    The recent results obtained on the ion-irradiation-induced carbon nanostructures in optoelectronic polymer materials exemplified by boron-ion-implanted polymethylmethacrylate (B:PMMA) with an energy of 40 keV, ion doses from 6.25 × 1014 to 5.0 × 1016 ions/cm2, and current density 1016 ions/cm2) and the experimental results of the comprehensive study are found to be in a good agreement with SRIM (stopping and range of ions in matter) simulation results

    CRISPR Systems for COVID-19 Diagnosis

    Get PDF
    The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RTqPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPRbased diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system

    Global injury morbidity and mortality from 1990 to 2017 : results from the Global Burden of Disease Study 2017

    Get PDF
    Correction:Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. Methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.Peer reviewe

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 071 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 502% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify.SUPPORTING INFORMATION : FIGURE S1. Data coverage by year. Here we visualise the volume of data used in the analysis by country and year. Larger circles indicate more data inputs. ‘NA’ indicates records for which no year was reported (eg, ‘pre-2000’). https://doi.org/10.1371/journal.pntd.0008824.s001FIGURE S2. Illustration of covariate values for year 2000. Maps were produced using ArcGIS Desktop 10.6. https://doi.org/10.1371/journal.pntd.0008824.s002FIGURE S3. Environmental suitability of onchocerciasis including locations that have received MDA for which no pre-intervention data are available. This plot shows suitability predictions from green (low = 0%) to pink (high = 100%), representing those areas where environmental conditions are most similar to prior pathogen detections. Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s003FIGURE S4. Environmental suitability prediction uncertainty including locations that have received MDA for which no pre-intervention data are available. This plot shows uncertainty associated with environmental suitability predictions colored from blue to red (least to most uncertain). Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s004FIGURE S5. Environmental suitability of onchocerciasis excluding morbidity data. This plot shows suitability predictions from green (low = 0%) to pink (high = 100%), representing those areas where environmental conditions are most similar to prior pathogen detections. Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s005FIGURE S6. Environmental suitability prediction uncertainty excluding morbidity data. This plot shows uncertainty associated with environmental suitability predictions colored from blue to red (least to most uncertain). Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. https://doi.org/10.1371/journal.pntd.0008824.s006FIGURE S7. Covariate Effect Curves for all onchocerciasis occurrences (measures of infection prevalence and disability). On the right set of axes we show the frequency density of the occurrences taking covariate values over 20 bins of the horizontal axis. The left set of axes shows the effect of each on the model, where the mean effect is plotted on the black line and its uncertainty is represented by the upper and lower confidence interval bounds plotted in dark grey. The figures show the fit per covariate relative to the data that correspond to specific values of the covariate. https://doi.org/10.1371/journal.pntd.0008824.s007FIGURE S8. Covariate Effect Curves for all onchocerciasis occurrences (measures of infection prevalence and disability). On the right set of axes we show the frequency density of the occurrences taking covariate values over 20 bins of the horizontal axis. The left set of axes shows the effect of each on the model, where the mean effect is plotted on the black line and its uncertainty is represented by the upper and lower confidence interval bounds plotted in dark grey. https://doi.org/10.1371/journal.pntd.0008824.s008FIGURE S9. ROC analysis for threshold. Results of the area under the receiver operating characteristic (ROC) curve analysis are presented below, with false positive rate (FPR) on the x-axis and true positive rate (TPR) on the y-axis. The red dot on the curve represents the location on the curve that corresponds to a threshold that most closely agreed with the input data. For each of the 100 BRT models, we estimated the optimal threshold that maximised agreement between occurrence inputs (considered true positives) and the mean model predictions as 0·71. https://doi.org/10.1371/journal.pntd.0008824.s009TABLE S1. Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) checklist. https://doi.org/10.1371/journal.pntd.0008824.s010TABLE S2. Total number of occurrence data classified as point and polygon inputs by diagnostic. We present the total number of occurrence points extracted from the input data sources by diagnostic type. ‘Other diagnostics’ include: DEC Patch test; Knott’s Method (Mazotti Test); 2 types of LAMP; blood smears; and urine tests. https://doi.org/10.1371/journal.pntd.0008824.s011TABLE S3. Total number of occurrence data classified as point and polygon inputs by location. https://doi.org/10.1371/journal.pntd.0008824.s012TABLE S4. Covariate information. https://doi.org/10.1371/journal.pntd.0008824.s013TEXT S1. Details outlining construction of occurrence dataset. https://doi.org/10.1371/journal.pntd.0008824.s014TEXT S2. Covariate rationale. https://doi.org/10.1371/journal.pntd.0008824.s015TEXT S3. Boosted regression tree methodology additional details. https://doi.org/10.1371/journal.pntd.0008824.s016APPENDIX S1. Country-level maps and data results. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s017This work was primarily supported by a grant from the Bill & Melinda Gates Foundation OPP1132415 (SIH). Financial support from the Neglected Tropical Disease Modelling Consortium (https://www.ntdmodelling.org/), which is funded by the Bill & Melinda Gates Foundation (grants No. OPP1184344 and OPP1186851), and joint centre funding (grant No. MR/R015600/1) by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement which is also part of the EDCTP2 programme supported by the European Union (MGB).The Neglected Tropical Disease Modelling Consortium which is funded by the Bill & Melinda Gates Foundation, the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement which is also part of the EDCTP2 programme supported by the European Union (MGB).http://www.plosNTDS.orgam2022Medical Microbiolog

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0.71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50.2% exceed this threshold for suitability in at least one 5×5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify

    Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study

    Get PDF
    Background: Many causes of vision impairment can be prevented or treated. With an ageing global population, the demands for eye health services are increasing. We estimated the prevalence and relative contribution of avoidable causes of blindness and vision impairment globally from 1990 to 2020. We aimed to compare the results with the World Health Assembly Global Action Plan (WHA GAP) target of a 25% global reduction from 2010 to 2019 in avoidable vision impairment, defined as cataract and undercorrected refractive error. Methods: We did a systematic review and meta-analysis of population-based surveys of eye disease from January, 1980, to October, 2018. We fitted hierarchical models to estimate prevalence (with 95% uncertainty intervals [UIs]) of moderate and severe vision impairment (MSVI; presenting visual acuity from <6/18 to 3/60) and blindness (<3/60 or less than 10° visual field around central fixation) by cause, age, region, and year. Because of data sparsity at younger ages, our analysis focused on adults aged 50 years and older. Findings: Global crude prevalence of avoidable vision impairment and blindness in adults aged 50 years and older did not change between 2010 and 2019 (percentage change −0·2% [95% UI −1·5 to 1·0]; 2019 prevalence 9·58 cases per 1000 people [95% IU 8·51 to 10·8], 2010 prevalence 96·0 cases per 1000 people [86·0 to 107·0]). Age-standardised prevalence of avoidable blindness decreased by −15·4% [–16·8 to −14·3], while avoidable MSVI showed no change (0·5% [–0·8 to 1·6]). However, the number of cases increased for both avoidable blindness (10·8% [8·9 to 12·4]) and MSVI (31·5% [30·0 to 33·1]). The leading global causes of blindness in those aged 50 years and older in 2020 were cataract (15·2 million cases [9% IU 12·7–18·0]), followed by glaucoma (3·6 million cases [2·8–4·4]), undercorrected refractive error (2·3 million cases [1·8–2·8]), age-related macular degeneration (1·8 million cases [1·3–2·4]), and diabetic retinopathy (0·86 million cases [0·59–1·23]). Leading causes of MSVI were undercorrected refractive error (86·1 million cases [74·2–101·0]) and cataract (78·8 million cases [67·2–91·4]). Interpretation: Results suggest eye care services contributed to the observed reduction of age-standardised rates of avoidable blindness but not of MSVI, and that the target in an ageing global population was not reached. Funding: Brien Holden Vision Institute, Fondation Théa, The Fred Hollows Foundation, Bill & Melinda Gates Foundation, Lions Clubs International Foundation, Sightsavers International, and University of Heidelberg

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Study of Endogenous Paramagnetic Centers in Biological Systems from Different Areas

    No full text
    Plant leaves (Eldar pine (Pinus eldarica M.), fig (Ficus carica L.), and olive (Olea europaea L.)), collected in territories with different ecological conditions, of the Absheron Peninsula (Azerbaijan Republic) were studied by electron paramagnetic resonance spectroscopy (EPR). The generation of nanophase iron oxide magnetic particles in biological systems under the influence of stress factors was revealed. It was found that the process of biomineralization plays a role in the formation of biogenic iron oxide magnetic nanoparticles in plants and the generation of magnetite crystals in biological tissues, and stress factors have a stimulating effect on this phenomenon
    corecore