76 research outputs found

    Impact of inter-pregnancy interval on long-term endo-metabolic health of the offspring

    Get PDF
    Background: Inter-pregnancy interval (IPI), defined as the time interval between a live birth and estimated conception time of a subsequent pregnancy, has an established effect on perinatal outcome. The long-term impact of IPI on offspring is unknown. This study aimed to examine the effect of short and long IPIs on long-term endo-metabolic health of offspring.Subjects and Method: This population-based cohort study included singleton live births in parturient with at least one previous birth. Singleton deliveries between the years 1991-2014 in a regional tertiary medical center were included. Offspring were followed until 18 years of age for endo-metabolic related hospitalizations. Survival curves were used to compare cumulative incidence of endo-metabolic morbidity, and Cox proportional hazards models to control for confounders.Results: During the study period 144,397 deliveries met the inclusion criteria. Offspring following long IPIs exhibited higher rates of endo-metabolic related hospitalizations. Survival curve demonstrated a significantly higher cumulative incidence of endo-metabolic morbidity in the long IPI group (p<0.001). The Cox model demonstrated long IPI to significantly increase the risk for endo-metabolic related hospitalizations during childhood (aHR= 1.34, 95%CI= 1.06 to 1.70; p=0.015).Conclusion: Long IPI appears to have an independent impact on long-term endo-metabolic health of the offspring.Keywords: pregnancy interval, offspring, endocrine health, metabolic morbidity, obesityCorrespondence: Liron Seidman. The Goldman Medical School at the Faculty of Health Sciences, Ben-Gurion University of the Negev. Ben-Gurion University Medical School, Soroka University Medical Center, 151 IzakRager Ave, Be’er-Sheva 84101, Israel. Email: [email protected]. Mobile: +972-524215808Journal of Maternal and Child Health (2020, 5(3): 321-330https://doi.org/10.26911/thejmch.2020.05.03.1

    Evidence of ζ Protein Kinase C Involvement in Polymorphonuclear Neutrophil Integrin-dependent Adhesion and Chemotaxis

    Get PDF
    Classical chemoattractants and chemokines trigger integrin-dependent adhesion of blood leukocytes to vascular endothelium and also direct subsequent extravasation and migration into tissues. In studies of human polymorphonuclear neutrophil responses to formyl peptides and to interleukin 8, we show evidence of involvement of the atypical zeta protein kinase C in the signaling pathway leading to chemoattractant-triggered actin assembly, integrin-dependent adhesion, and chemotaxis. Selective inhibitors of classical and novel protein kinase C isozymes do not prevent chemoattractant-induced neutrophil adhesion and chemotaxis. In contrast, chelerythrine chloride and synthetic myristoylated peptides with sequences based on the endogenous zeta protein kinase C pseudosubstrate region block agonist-induced adhesion to fibrinogen, chemotaxis and F-actin accumulation. Biochemical analysis shows that chemoattractants trigger rapid translocation of zeta protein kinase C to the plasma membrane accompanied by rapid but transient increase of the kinase activity. Moreover, pretreatment with C3 transferase, a specific inhibitor of Rho small GTPases, blocks zeta but not alpha protein kinase C plasma membrane translocation. Synthetic peptides from zeta protein kinase C also inhibit phorbol ester-induced integrin-dependent adhesion but not NADPH-oxidase activation, and C3 transferase pretreatment blocks phorbol ester-triggered translocation of zeta but not alpha protein kinase C. These data suggest the involvement of zeta protein kinase C in chemoattractant-induced leukocyte integrin-dependent adhesion and chemotaxis. Moreover, they highlight a potential link between atypical protein kinase C isozymes and Rho signaling pathways leading to integrin-activation

    Dynamic Proteomics: a database for dynamics and localizations of endogenous fluorescently-tagged proteins in living human cells

    Get PDF
    Recent advances allow tracking the levels and locations of a thousand proteins in individual living human cells over time using a library of annotated reporter cell clones (LARC). This library was created by Cohen et al. to study the proteome dynamics of a human lung carcinoma cell-line treated with an anti-cancer drug. Here, we report the Dynamic Proteomics database for the proteins studied by Cohen et al. Each cell-line clone in LARC has a protein tagged with yellow fluorescent protein, expressed from its endogenous chromosomal location, under its natural regulation. The Dynamic Proteomics interface facilitates searches for genes of interest, downloads of protein fluorescent movies and alignments of dynamics following drug addition. Each protein in the database is displayed with its annotation, cDNA sequence, fluorescent images and movies obtained by the time-lapse microscopy. The protein dynamics in the database represents a quantitative trace of the protein fluorescence levels in nucleus and cytoplasm produced by image analysis of movies over time. Furthermore, a sequence analysis provides a search and comparison of up to 50 input DNA sequences with all cDNAs in the library. The raw movies may be useful as a benchmark for developing image analysis tools for individual-cell dynamic-proteomics. The database is available at http://www.dynamicproteomics.net/

    Clinical and virological characteristics of hospitalised COVID-19 patients in a German tertiary care centre during the first wave of the SARS-CoV-2 pandemic: a prospective observational study

    Get PDF
    Purpose: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. Methods: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. Results: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. Conclusions: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore