204 research outputs found

    The 1994 NASA/USRA/ADP Design Projects

    Get PDF
    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design

    Reviews, Critiques, and Annotations

    Get PDF

    Adaptation and Convergent Evolution within the Jamesonia-Eriosorus Complex in High-Elevation Biodiverse Andean Hotspots

    Get PDF
    The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude pĂĄramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. PĂĄramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the pĂĄramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among pĂĄramo than non-pĂĄramo lineages supporting the hypothesis of adaptation and divergence in the unique PĂĄramo biodiversity hotspot

    Gas and seismicity within the Istanbul seismic gap

    Get PDF
    Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M < 3) within the Istanbul offshore domain

    Novel retrotransposed imprinted locus identified at human 6p25

    Get PDF
    Differentially methylated regions (DMRs) are stable epigenetic features within or in proximity to imprinted genes. We used this feature to identify candidate human imprinted loci by quantitative DNA methylation analysis. We discovered a unique DMR at the 5â€Č-end of FAM50B at 6p25.2. We determined that sense transcripts originating from the FAM50B locus are expressed from the paternal allele in all human tissues investigated except for ovary, in which expression is biallelic. Furthermore, an antisense transcript, FAM50B-AS, was identified to be monoallelically expressed from the paternal allele in a variety of tissues. Comparative phylogenetic analysis showed that FAM50B orthologs are absent in chicken and platypus, but are present and biallelically expressed in opossum and mouse. These findings indicate that FAM50B originated in Therians after divergence from Prototherians via retrotransposition of a gene on the X chromosome. Moreover, our data are consistent with acquisition of imprinting during Eutherian evolution after divergence of Glires from the Euarchonta mammals. FAM50B expression is deregulated in testicular germ cell tumors, and loss of imprinting occurs frequently in testicular seminomas, suggesting an important role for FAM50B in spermatogenesis and tumorigenesis. These results also underscore the importance of accounting for parental origin in understanding the mechanism of 6p25-related diseases

    Cryptospores and cryptophytes reveal hidden diversity in early land floras

    Get PDF
    Cryptospores, recovered from Ordovician through Devonian rocks, differ from trilete spores in possessing distinctive configurations (i.e. hilate monads, dyads, and permanent tetrads). Their affinities are contentious, but knowledge of their relationships is essential to understanding the nature of the earliest land flora. This review brings together evidence about the source plants, mostly obtained from spores extracted from minute, fragmented, yet exceptionally anatomically preserved fossils. We coin the term ‘cryptophytes’ for plants that produced the cryptospores and show them to have been simple terrestrial organisms of short stature (i.e. millimetres high). Two lineages are currently recognized. Partitatheca shows a combination of characters (e.g. spo-rophyte bifurcation, stomata, and dyads) unknown in plants today. Lenticulatheca encompasses discoidal sporangia containing monads formed from dyads with ultrastructure closer to that of higher plants, as exemplified by Cooksonia. Other emerging groupings are less well characterized, and their precise affinities to living clades remain unclear. Some may be stem group embryophytes or tracheophytes. Others are more closely related to the bryophytes, but they are not bryophytes as defined by extant representatives. Cryptophytes encompass a pool of diversity from which modern bryophytes and vascular plants emerged, but were competitively replaced by early tracheophytes. Sporogenesis always produced either dyads or tetrads, indicating strict genetic control. The long-held consensus that tetrads were the archetypal condition in land plants is challenged

    Did Our Species Evolve in Subdivided Populations across Africa, and Why Does It Matter?

    Get PDF
    We challenge the view that our species, Homo sapiens, evolved within a single population and/or region of Africa. The chronology and physical diversity of Pleistocene human fossils suggest that morphologically varied populations pertaining to the H. sapiens clade lived throughout Africa. Similarly, the African archaeological record demonstrates the polycentric origin and persistence of regionally distinct Pleistocene material culture in a variety of paleoecological settings. Genetic studies also indicate that present-day population structure within Africa extends to deep times, paralleling a paleoenvironmental record of shifting and fractured habitable zones. We argue that these fields support an emerging view of a highly structured African prehistory that should be considered in human evolutionary inferences, prompting new interpretations, questions, and interdisciplinary research directions
    • 

    corecore