130 research outputs found

    Three Phases in the 3D Abelian Higgs Model with Nonlocal Gauge Interactions

    Full text link
    We study the phase structure of the 3D nonlocal compact U(1) lattice gauge theory coupled with a Higgs field by means of Monte-Carlo simulations. The nonlocal interactions among gauge variables are along the temporal direction and mimic the effect of local coupling to massless particles. We found that in contrast to the 3D local abelian Higgs model which has only one phase, the present model exhibits the confinement, Higgs, and Coulomb phases separated by three second-order transition lines emanating from a triple point. This result is quite important for studies on electron fractionalization phenomena in strongly-correlated electron systems. Implications to them are discussed

    CP^1+U(1) Lattice Gauge Theory in Three Dimensions: Phase Structure, Spins, Gauge Bosons, and Instantons

    Full text link
    In this paper we study a 3D lattice spin model of CP1^1 Schwinger-bosons coupled with dynamical compact U(1) gauge bosons. The model contains two parameters; the gauge coupling and the hopping parameter of CP1^1 bosons. At large (weak) gauge couplings, the model reduces to the classical O(3) (O(4)) spin model with long-range and/or multi-spin interactions. It is also closely related to the recently proposed "Ginzburg-Landau" theory for quantum phase transitions of s=1/2s=1/2 quantum spin systems on a 2D square lattice at zero temperature. We numerically study the phase structure of the model by calculating specific heat, spin correlations, instanton density, and gauge-boson mass. The model has two phases separated by a critical line of second-order phase transition; O(3) spin-ordered phase and spin-disordered phase. The spin-ordered phase is the Higgs phase of U(1) gauge dynamics, whereas the disordered phase is the confinement phase. We find a crossover in the confinement phase which separates dense and dilute regions of instantons. On the critical line, spin excitations are gapless, but the gauge-boson mass is {\it nonvanishing}. This indicates that a confinement phase is realized on the critical line. To confirm this point, we also study the noncompact version of the model. A possible realization of a deconfinement phase on the criticality is discussed for the CPN^N+U(1) model with larger NN.Comment: Discussion of finite size scaling, O(4) spin correlation adde

    Quantum Phase Transition in Lattice Model of Unconventional Superconductors

    Full text link
    In this paper we shall introduce a lattice model of unconventional superconductors (SC) like d-wave SC in order to study quantum phase transition at vanishing temperature (TT). Finite-TT counterpart of the present model was proposed previously with which SC phase transition at finite TT was investigated. The present model is a noncompact U(1) lattice-gauge-Higgs model in which the Higgs boson, the Cooper-pair field, is put on lattice links in order to describe d-wave SC. We first derive the model from a microscopic Hamiltonian in the path-integral formalism and then study its phase structure by means of the Monte Carlo simulations. We calculate the specific heat, monopole densities and the magnetic penetration depth (the gauge-boson mass). We verified that the model exhibits a second-order phase transition from normal to SC phases. Behavior of the magnetic penetration depth is compared with that obtained in the previous analytical calculation using XY model in four dimensions. Besides the normal to SC phase transition, we also found that another second-order phase transition takes place within the SC phase in the present model. We discuss physical meaning of that phase transition.Comment: 12 pages, 10 figures, references added, some discussion on the results adde

    Higgs mechanism and superconductivity in U(1) lattice gauge theory with dual gauge fields

    Full text link
    We introduce a U(1) lattice gauge theory with dual gauge fields and study its phase structure. This system is motivated by unconventional superconductors like extended s-wave and d-wave superconductors in the strongly-correlated electron systems. In this theory, the "Cooper-pair" field is put on links of a cubic lattice due to strong on-site repulsion between electrons in contrast to the ordinary s-wave Cooper-pair field on sites. This Cooper-pair field behaves as a gauge field dual to the electromagnetic U(1) gauge field. By Monte Carlo simulations we study this lattice gauge model and find a first-order phase transition from the normal state to the Higgs (superconducting) state. Each gauge field works as a Higgs field for the other gauge field. This mechanism requires no scalar fields in contrast to the ordinary Higgs mechanism.Comment: 4 pages, 6 figure

    Phase Structure of a 3D Nonlocal U(1) Gauge Theory: Deconfinement by Gapless Matter Fields

    Full text link
    In this paper, we study a 3D compact U(1) lattice gauge theory with a variety of nonlocal interactions that simulates the effects of gapless/gapful matter fields. This theory is quite important to investigate the phase structures of QED3_3 and strongly-correlated electron systems like the 2D quantum spin models, the fractional quantum Hall effect, the t-J model of high-temperature superconductivity. We restrict the nonlocal interactions among gauge variables only to those along the temporal direction and adjust their coupling constants optimally to simulate the isotropic nonlocal couplings of the original models. We perform numerical studies of the model to find that, for a certain class of power-decaying couplings, there appears a second-order phase transition to the deconfinement phase as the gauge coupling constant is decreased. On the other hand, for the exponentially-decaying coupling, there are no signals for second-order phase transition. These results indicate the possibility that introduction of sufficient number of massless matter fields destabilizes the permanent confinement in the 3D compact U(1) pure gauge theory due to instantons.Comment: The version to be published in Nucl.Phys.

    Genetic Characterization of Hantaviruses Transmitted by the Korean Field Mouse (Apodemus peninsulae), Far East Russia

    Get PDF
    In an epizootiologic survey of 122 rodents captured in Vladivostok, Russia, antibodies positive for hantavirus were found in Apodemus peninsulae (4/70), A. agrarius (1/39), and Clethrionomys rufocanus (1/8). The hantavirus sequences identified in two seropositive A. peninsulae and two patients with hemorrhagic fever with renal syndrome (HFRS) from the Primorye region of Far East Russia were designated as Solovey and Primorye, respectively. The nucleotide sequences of the Solovey, Primorye, and Amur (obtained through GenBank) sequences were closely related (>92% identity). Solovey and Primorye sequences shared 84% nucleotide identity with the prototype Hantaan 76-118. Phylogenetic analysis also indicated a close relationship between Solovey, Primorye, Amur, and other viruses identified in Russia, China, and Korea. Our findings suggest that the Korean field mouse (A. peninsulae) is the reservoir for a hantavirus that causes HFRS over a vast area of east Asia, including Far East Russia

    Proteinuria and Reduced Estimated Glomerular Filtration Rate Are Independently Associated With Lower Cognitive Abilities in Apparently Healthy Community-Dwelling Elderly Men in Japan: A Cross-sectional Study.

    Get PDF
    Background:The association of proteinuria and reduced estimated glomerular filtration rate (eGFR) with cognition needs more clarification. We cross-sectionally examined whether proteinuria and reduced eGFR, even in moderate stages, were independently associated with lower cognition in a community-based sample of elderly men.Methods:Our cohort initially comprised 1,094 men aged 40-79 years from a random sample from Shiga, Japan in 2006-2008. Of 853 men who returned for the follow-up examination (2009-2014), we analyzed 561 who were ≥65 years, free of stroke, and completed the Cognitive Abilities Screening Instrument (CASI) at follow-up (higher CASI scores [range 0 to 100] indicate better cognition). Proteinuria was assessed via dipstick. eGFR was calculated according to the Chronic Kidney Disease Epidemiology Collaboration Equation. Participants were divided into three groups either by eGFR (≥60, 59-40, and <40 mL/min/1.73 m2) or by proteinuria (no, trace, and positive), considered normal, moderate, and advanced, respectively. Using linear regression, we computed mean CASI score, with simultaneous adjustment for proteinuria and eGFR in addition to other potential confounders.Results: Significant trends of lower cognition were observed across the groups of worse proteinuria and lower eGFR independently: multivariable-adjusted mean CASI scores were 90.1, 89.3, and 88.4 for proteinuria (Ptrend = 0.029), and 90.0, 88.5, and 88.5 for eGFR (Ptrend = 0.015) in mutual-adjustment model.Conclusions: Proteinuria and reduced eGFR, even in their moderate stages, were independently associated with lower cognition in a community-based sample of elderly men. The results suggest the importance of proteinuria and low eGFR for early detection and prevention of cognitive decline

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore