196 research outputs found
The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids
We have developed a model-independent analytical method for debiasing the
four-dimensional (a,e,i,H) distribution obtained in any asteroid observation
program and have applied the technique to results obtained with the 0.9m
Spacewatch Telescope. From 1992 to 1995 Spacewatch observed ~3740 deg^2 near
the ecliptic and made observations of more than 60,000 asteroids to a limiting
magnitude of V~21. The debiased semi-major axis and inclination distributions
of Main Belt asteroids in this sample with 11.5<= H <16 match the distributions
of the known asteroids with H <11.5. The absolute magnitude distribution was
studied in the range 8< H <17.5. We have found that the set of known asteroids
is complete to about absolute magnitudes 12.75, 12.25 and 11.25 in the inner,
middle and outer regions of the belt respectively. The number distribution as a
function of absolute magnitude cannot be represented by a single power-law
(10^{alpha H}) in any region. We were able to define broad ranges in H in each
part of the belt where alpha was nearly constant. Within these ranges of H the
slope does not correspond to the value of 0.5 expected for an equilibrium
cascade in self-similar collisions (Dohnanyi, 1971). The value of alpha varies
with absolute magnitude and shows a `kink' in all regions of the belt for H~13.
This absolute magnitude corresponds to a diameter ranging from about 8.5 to
12.5 km depending on the albedo or region of the belt.Comment: 33 pages, 6 figures, 6 tables. published in Icaru
Stellar Inversion Techniques
Stellar seismic inversions have proved to be a powerful technique for probing
the internal structure of stars, and paving the way for a better understanding
of the underlying physics by revealing some of the shortcomings in current
stellar models. In this lecture, we provide an introduction to this topic by
explaining kernel-based inversion techniques. Specifically, we explain how
various kernels are obtained from the pulsation equations, and describe
inversion techniques such as the Regularised Least-Squares (RLS) and Optimally
Localised Averages (OLA) methods.Comment: 20 pages, 8 figures. Lecture presented at the IVth Azores
International Advanced School in Space Sciences on "Asteroseismology and
Exoplanets: Listening to the Stars and Searching for New Worlds"
(arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in
July 201
Asteroseismology of Eclipsing Binary Stars in the Kepler Era
Eclipsing binary stars have long served as benchmark systems to measure
fundamental stellar properties. In the past few decades, asteroseismology - the
study of stellar pulsations - has emerged as a new powerful tool to study the
structure and evolution of stars across the HR diagram. Pulsating stars in
eclipsing binary systems are particularly valuable since fundamental properties
(such as radii and masses) can determined using two independent techniques.
Furthermore, independently measured properties from binary orbits can be used
to improve asteroseismic modeling for pulsating stars in which mode
identifications are not straightforward. This contribution provides a review of
asteroseismic detections in eclipsing binary stars, with a focus on space-based
missions such as CoRoT and Kepler, and empirical tests of asteroseismic scaling
relations for stochastic ("solar-like") oscillations.Comment: 28 pages, 12 figures, 2 tables; Proceedings of the AAS topical
conference "Giants of Eclipse" (AASTCS-3), July 28 - August 2 2013, Monterey,
C
ASTEC -- the Aarhus STellar Evolution Code
The Aarhus code is the result of a long development, starting in 1974, and
still ongoing. A novel feature is the integration of the computation of
adiabatic oscillations for specified models as part of the code. It offers
substantial flexibility in terms of microphysics and has been carefully tested
for the computation of solar models. However, considerable development is still
required in the treatment of nuclear reactions, diffusion and convective
mixing.Comment: Astrophys. Space Sci, in the pres
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
A Multiwavelength Photometric Census of AGN and Star Formation Activity in the Brightest Cluster Galaxies of X-ray Selected Clusters
Despite their reputation as being ‘red and dead’, the unique environment inhabited by brightest cluster galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and active galactic nucleus (AGN) activity in the BCG. However the prevalence of ‘active’ BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs – indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14 per cent of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG ‘activity’ with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG ‘activity’ and the intracluster medium
Stellar activity cycles and contribution of the deep layers knowledge
It is believed that magnetic activity on the Sun and solar-type stars are
tightly related to the dynamo process driven by the interaction between
rotation, convection, and magnetic field. However, the detailed mechanisms of
this process are still incompletely understood. Many questions remain
unanswered, e.g.: why some stars are more active than others?; why some stars
have a flat activity?; why is there a Maunder minimum?; are all the cycles
regular? A large number of prox- ies are typically used to study the magnetic
activity of stars as we cannot resolve stellar discs. Recently, it was shown
that asteroseismology can also be used to study stellar activity, making it an
even more powerful tool. If short cycles are not so un- common, we expect to
detect many of them with missions such as CoRoT, Kepler, and possibly the PLATO
mission. We will review some of the latest results obtained with spectroscopic
measurements. We will show how asteroseismology can help us to better
understand the complex process of dynamo and illustrate how the CoRoT and
Kepler missions are revolutionizing our knowledge on stellar activity. A new
window is being opened over our understanding of the magnetic variability of
stars.Comment: 7 pages. To appear in Astrophysics and Space Science Proceedings
series of the 20th Stellar pulsation conference held in Granada (Spain) from
6 to 10 September 2011
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
- …
