474 research outputs found

    Temperature dependence and mechanisms for vortex pinning by periodic arrays of Ni dots in Nb films

    Full text link
    Pinning interactions between superconducting vortices in Nb and magnetic Ni dots were studied as a function of current and temperature to clarify the nature of pinning mechanisms. A strong current dependence is found for a square array of dots, with a temperature dependent optimum current for the observation of periodic pinning, that decreases with temperature as (1-T/Tc)3/2. This same temperature dependence is found for the critical current at the first matching field with a rectangular array of dots. The analysis of these results allows to narrow the possible pinning mechanisms to a combination of two: the interaction between the vortex and the magnetic moment of the dot and the proximity effect. Moreover, for the rectangular dot array, the temperature dependence of the crossover between the low field regime with a rectangular vortex lattice to the high field regime with a square configuration has been studied. It is found that the crossover field increases with decreasing temperature. This dependence indicates a change in the balance between elastic and pinning energies, associated with dynamical effects of the vortex lattice in the high field range.Comment: 12 text pages (revtex), 6 figures (1st jpeg, 2nd-6th postscript) accepted in Physical Review

    Charge Transport Through Open, Driven Two-Level Systems with Dissipation

    Full text link
    We derive a Floquet-like formalism to calculate the stationary average current through an AC driven double quantum dot in presence of dissipation. The method allows us to take into account arbitrary coupling strengths both of a time-dependent field and a bosonic environment. We numerical evaluate a truncation scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.

    The fully differential single-top-quark cross section in next-to-leading order QCD

    Get PDF
    We present a new next-to-leading order calculation for fully differential single-top-quark final states. The calculation is performed using phase space slicing and dipole subtraction methods. The results of the methods are found to be in agreement. The dipole subtraction method calculation retains the full spin dependence of the final state particles. We show a few numerical results to illustrate the utility and consistency of the resulting computer implementations.Comment: 37 pages, latex, 2 ps figure

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    Nuclear effects on J/{\psi} production in proton-nucleus collisions

    Full text link
    The study of nuclear effects for J/{\psi} production in proton-nucleus collisions is crucial for a correct interpretation of the J/{\psi} suppression patterns experimentally observed in heavy-ion collisions. By means of three representative sets of nuclear parton distribution, the energy loss effect in the initial state and the nuclear absorption effect in the final state are taken into account in the uniform framework of the Glauber model. A leading order phenomenological analysis is performed on J/{\psi} production cross-section ratios RW/Be(xF) for the E866 experimental data. The J/{\psi} suppression is investigated quantitatively due to the different nuclear effects. It is shown that the energy loss effect with resulting in the suppression on RW/Be(xF) is more important than the nuclear effects on parton distributions in high xF region. The E866 data in the small xF keep out the nuclear gluon distribution with a large anti-shadowing effect. However, the new HERA-B measurement is not in support of the anti-shadowing effect in the nuclear gluon distribution. It is found that the J/{\psi}-nucleon inelastic cross section {\sigma} J/{\psi} abs depends on the kinematical variable xF, and increases as xF in the region xF > 0.2. 1 Introductio

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Search for scalar bottom quarks and third-generation leptoquarks in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We report the results of a search for pair production of scalar bottom quarks (sbottom) and scalar third-generation leptoquarks in 5.2 fb-1 of ppbar collisions at the D0 experiment of the Fermilab Tevatron Collider. Scalar bottom quarks are assumed to decay to a neutralino and a bb quark, and we set 95% C.L. lower limits on their production in the (m_sbottom, m_neutralino) mass plane such as m_sbottom>247 GeV for m_neutralino=0 and m_neutralino>110 GeV for 160<m_sbottom<200 GeV. The leptoquarks are assumed to decay to a tau neutrino and a bb quark, and we set a 95% C.L. lower limit of 247 GeV on the mass of a charge-1/3 third-generation scalar leptoquark.Comment: Published by Phys. Lett.

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore