160 research outputs found

    Magnitude and crystalline anisotropy of hole magnetization in (Ga,Mn)As

    Full text link
    Theory of hole magnetization Mc in zinc-blende diluted ferromagnetic semiconductors is developed relaxing the spherical approximation of earlier approaches. The theory is employed to determine Mc for (Ga,Mn)As over a wide range of hole concentrations and a number of crystallographic orientations of Mn magnetization. It is found that anisotropy of Mc is practically negligible but the obtained magnitude of Mc is significantly greater than that determined in the spherical approximation. Its sign and value compares favorably with the results of available magnetization measurements and ferromagnetic resonance studies.Comment: 5 pages, 3 figure

    Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors

    Full text link
    It is demonstrated that the nearest neighbor Mn pair on the GaAs (001) surface has a lower energy for the [-110] direction comparing to the [110] case. According to the group theory and the Luttinger's method of invariants, this specific Mn distribution results in bulk uniaxial in-plane and out-of-plane anisotropies. The sign and magnitude of the corresponding anisotropy energies determined by a perturbation method and ab initio computations are consistent with experimental results.Comment: 5 pages, 1 figur

    Heralded generation of entangled photon pairs

    Full text link
    Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused in overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric down-conversion. We utilize the down-conversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing

    The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy

    Get PDF
    This paper presents the results of investigations on microstructure changes after the long-term impact of temperature. The microstructure investigations were carried out by light microscopy and scanning electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray phase composition analysis. The effect of elevated temperature on precipitation processes of test material were described. The obtained results of investigations form part of the material characteristics of new-generation alloys, which can be indirectly associated with the stability of functional properties under the simultaneous effect of high temperature and stress

    The nature of the unresolved extragalactic soft CXB

    Get PDF
    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV CXB with deep Chandra 4 Ms observations in the CDFS. We measured a signal which, on scales >30", is significantly higher than the Shot-Noise and is increasing with the angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like AGN, Galaxies and Inter-Galactic-Medium (IGM). The power of unresolved cosmic sources fluctuations accounts for \sim 12% of the 0.5-2 keV extragalactic CXB. Overall, our modeling predicts that \sim 20% of the unresolved CXB flux is made by low luminosity AGN, \sim 25% by galaxies and \sim 55% by the IGM (Inter Galactic Medium). We do not find any direct evidence of the so called Warm Hot Intergalactic Medium (i.e. matter with 10^5K<T<10^7K and density contrast {\delta} <1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit to the space density of postulated X-ray-emitting early black hole at z>7.5 and compared it with SMBH evolution models.Comment: 15 pages, 9 figures, accepted by MNRA

    Playing in the academic field: Non-native English-speaking academics in UK business schools

    Get PDF
    This paper draws on Bourdieu's concepts of field, habitus and capital to explore the ways in which working in English as a non-native language influences foreign academics' performance of academic habitus and the level of their symbolic capital necessary for the achievement of success within UK higher education. Empirically, it is based on interviews with 54 non-native English-speaking academics employed in UK business schools. Our findings point to advantages and disadvantages associated with being a non-native English-speaking academic, to strategies deployed by individuals to enhance their linguistic capital, and to the importance of language not merely as a tool of communication but as a key factor enabling individuals to perform academic habitus in the UK academic field. We reflect on whether, and if so, how, the UK academic field is changing as a result of the increased presence within it of non-UK-born academics and, in particular, the fact of their professional functioning in English as a non-native language

    Hysteretic magnetoresistance and thermal bistability in a magnetic two-dimensional hole system

    Full text link
    Colossal negative magnetoresistance and the associated field-induced insulator-to-metal transition, the most characteristic features of magnetic semiconductors, are observed in n-type rare earth oxides and chalcogenides, p-type manganites, n-type and p-type diluted magnetic semiconductors (DMS) as well as in quantum wells of n-type DMS. Here, we report on magnetostransport studies of Mn modulation-doped InAs quantum wells, which reveal a magnetic field driven and bias voltage dependent insulator-to-metal transition with abrupt and hysteretic changes of resistance over several orders of magnitude. These phenomena coexist with the quantised Hall effect in high magnetic fields. We show that the exchange coupling between a hole and the parent Mn acceptor produces a magnetic anisotropy barrier that shifts the spin relaxation time of the bound hole to a 100 s range in compressively strained quantum wells. This bistability of the individual Mn acceptors explains the hysteretic behaviour while opening prospects for information storing and processing. At high bias voltage another bistability, caused by the overheating of electrons10, gives rise to abrupt resistance jumps

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports
    • 

    corecore