2,691 research outputs found

    Paramaterizations of inclusive cross sections for pion production in proton-proton collisions. II. Comparison to new data

    Get PDF
    A set of new, precise data have recently been made available by the NA49 collaboration for charged pion production in proton-proton and proton-Carbon reactions at 158 GeV. The current paper compares this new data to five currently available arithmetic parameterizations. Although a precise fit is not expected, two of the parameterizations do not work very well but the other three are able to provide a moderately good, but not precise fit to the proton-proton data. The best two of these three parameterizations are scaled to the proton-Carbon data and again provide a moderately good, but not precise fit.Comment: 11 pages, 13 figures, Accepted for publication in Physical Review

    QCD corrections to the decay H+tbˉH^+ \to t \bar{b} in the Minimal Supersymmetric Standard Model

    Full text link
    We present a complete calculation of the QCD corrections (of the order αs\alpha_s) to the width of the decay H+tbˉH^+ \to t \bar{b} within the Minimal Supersymmetric Standard Model. We find that the QCD corrections are quite important, and that the supersymmetric QCD corrections (due to gluino, stop and sbottom exchange) can be comparable to or even larger than the standard QCD corrections in a large region of the supersymmetric parameter space. This is mainly due to the effect of large left-right mixings of stop and sbottom. This could significantly affect the phenomenology of the H+H^+ search.Comment: 12 pages latex, 5 uuencoded figures, LateX file of text and PS-files of the text and the figures are also available via anonymous ftp at ftp://info.oeaw.ac.at/pub/hephy-pub/631 . Figures have been changed (and fig. 5 added), and accordingly the discussion of thes

    Characteristics and sources of gravity waves observed in noctilucent cloud over Norway

    Get PDF
    Four years of noctilucent cloud (NLC) images from an automated digital camera in Trondheim and results from a ray-tracing model are used to extend the climatology of gravity waves to higher latitudes and to identify their sources during summertime. The climatology of the summertime gravity waves detected in NLC between 64 and 74° N is similar to that observed between 60 and 64° N by Pautet et al. (2011). The direction of propagation of gravity waves observed in the NLC north of 64° N is a continuation of the north and northeast propagation as observed in south of 64° N. However, a unique population of fast, short wavelength waves propagating towards the SW is observed in the NLC, which is consistent with transverse instabilities generated in situ by breaking gravity waves (Fritts and Alexander, 2003). The relative amplitude of the waves observed in the NLC Mie scatter have been combined with ray-tracing results to show that waves propagating from near the tropopause, rather than those resulting from secondary generation in the stratosphere or mesosphere, are more likely to be the sources of the prominent wave structures observed in the NLC. The coastal region of Norway along the latitude of 70° N is identified as the primary source region of the waves generated near the tropopause

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore