31 research outputs found

    Seasonal Changes in Titan's Surface Temperatures

    Get PDF
    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer (CIRS) measured surface radiances at 19 micron in two time periods: one in late northern winter (Ls = 335d eg) and another centered on northern spring equinox (Ls = 0 deg). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between late northern winter and northern spring equinox a shift occurred in the temperature distribution, characterized by a warming of approximately 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was 93.4 K. We measured a seasonal lag of delta Ls approximately 9 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 deg S in the relatively cloud-free zone between the mid-latitude and southern cloud regions

    Genetic Code Mutations: The Breaking of a Three Billion Year Invariance

    Get PDF
    The genetic code has been unchanging for some three billion years in its canonical ensemble of encoded amino acids, as indicated by the universal adoption of this ensemble by all known organisms. Code mutations beginning with the encoding of 4-fluoro-Trp by Bacillus subtilis, initially replacing and eventually displacing Trp from the ensemble, first revealed the intrinsic mutability of the code. This has since been confirmed by a spectrum of other experimental code alterations in both prokaryotes and eukaryotes. To shed light on the experimental conversion of a rigidly invariant code to a mutating code, the present study examined code mutations determining the propagation of Bacillus subtilis on Trp and 4-, 5- and 6-fluoro-tryptophans. The results obtained with the mutants with respect to cross-inhibitions between the different indole amino acids, and the growth effects of individual nutrient withdrawals rendering essential their biosynthetic pathways, suggested that oligogenic barriers comprising sensitive proteins which malfunction with amino acid analogues provide effective mechanisms for preserving the invariance of the code through immemorial time, and mutations of these barriers open up the code to continuous change

    Scientific rationale for Uranus and Neptune <i>in situ</i> explorations

    Get PDF
    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Saturn Atmospheric Structure and Dynamics

    Full text link
    2 Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee ” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn’s south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather laye

    The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region.

    No full text
    The Zymomonas mobilis genes that encode the glucose-facilitated diffusion transporter (glf), glucose-6-phosphate dehydrogenase (zwf), 6-phosphogluconate dehydratase (edd), and glucokinase (glk) are clustered on the genome. The data presented here firmly establish that the glf, zwf, edd, and glk genes form an operon, in that order. The four genes of the operon are cotranscribed on a 6.14-kb mRNA. The site of transcriptional initiation for the polycistronic message was mapped by primer extension and nuclease S1 protection analysis. The glf operon promoter region showed significant homology to other highly expressed Z. mobilis promoters, but not to consensus promoters from other bacteria. The highly expressed Z. mobilis promoter set contains two independent, overlapping, conserved sequences that extend from approximately bp -100 to +15 with respect to the transcriptional start sites. Expression of the glf operon was shown to be subject to carbon source-dependent regulation. The mRNA level was threefold higher in cells grown on fructose than in cells grown on glucose. This increase was not the result of differential mRNA processing when cells were grown on the different carbon sources, nor was it the result of differential transcript stability. Degradation of the 6.14-kb glf operon mRNA was biphasic, with initial half-lives of 11.5 min in fructose-grown cells and 12.0 min in glucose-grown cells. Thus, the higher level of glf operon mRNA in fructose-grown cells is the result of an increased rate of transcription. The importance of increasing glf expression in cells growing on fructose is discussed

    The vertical profile of CO in the atmosphere of Neptune from JCMT and IRAM observations

    No full text
    In this paper, we will present a new observation of CO in the atmosphere of Neptune, obtained with the James Clerck Maxwell Telescope (JCMT) in the CO(6-5) line at 691.473GHz. We will present a joint analysis of this line and the CO(2-1) and CO(3-2) lines (published previously in [5, 6]) with the photochemical model we have developed in [10]. We will derive new constraints on the CO vertical profile in the upper atmosphere of Neptune and thus on the origin of this species

    Herschel Temporal Monitoring Observations Of H2O In Saturn's Hot Stratospheric Vortex Between 2011 And 2012

    No full text
    The planetary-scale storm that perturbed Saturn's seasonal cycle in its northern hemisphere in 2010-2011 has left a hot stratospheric vortex at 40∘N. This large vortex is still observable as of mid-2012. Cassini and ground-based observations have shown that the temperature and the chemistry of hydrocarbons have been perturbed in the vortex. We have observed Saturn when the vortex was visible with the Herschel Space Observatory in July 2011, February and July 2012 to map H2O at 66 and 67 microns and CH4 at 120 microns with the PACS instrument and CH4 at 159 microns with the HIFI instrument. We use the CH4 maps as a temperature probe and the H2O maps to check if the chemistry of oxygen compounds has also been perturbed by the vortex. In this paper, we will present the observations and their analysis to illustrate the temporal evolution of the abundance of H2O in the vortex. For instance, we inferred an increase by a factor of 30-100 of the H2O column in the vortex with Herschel/PACS in July 2011 in a preliminary analysis. T. Cavalié is supported by funding from CNES
    corecore