121 research outputs found

    A model-based approach to assess the effectiveness of pest biocontrol by natural enemies

    Full text link
    Main goal: The aim of this note is to propose a modeling approach for assessing the effectiveness of pest biocontrol by natural enemies in diversified agricultural landscapes including several pesticide-based management strategies. Our approach combines a stochastic landscape model with a spatially-explicit model of population dynamics. It enables us to analyze the effect of the landscape composition (proportion of semi-natural habitat, non-treated crops, slightly treated crops and conventionally treated crops) on the effectiveness of pest biocontrol. Effectiveness is measured through environmental and agronomical descriptors, measuring respectively the impact of the pesticides on the environment and the average agronomic productivity of the whole landscape taking into account losses caused by pests. Conclusions: The effectiveness of the pesticide, the intensity of the treatment and the pest intrinsic growth rate are found to be the main drivers of landscape productivity. The loss in productivity due to a reduced use of pesticide can be partly compensated by biocontrol. However, the model suggests that it is not possible to maintain a constant level of productivity while reducing the use of pesticides, even with highly efficient natural enemies. Fragmentation of the semi-natural habitats and increased crop rotation tend to slightly enhance the effectiveness of biocontrol but have a marginal effect compared to the predation rate by natural enemies. This note was written in the framework of the ANR project PEERLESS "Predictive Ecological Engineering for Landscape Ecosystem Services and Sustainability"(ANR-12-AGRO-0006)

    Seasonality and the evolutionary divergence of plant parasites

    No full text
    The coexistence of closely related plant parasites is widespread. Yet, understanding the ecological determinants of evolutionary divergence in plant parasites remains an issue. Niche differentiation through resource specialization has been widely researched, but it hardly explains the coexistence of parasites exploiting the same host plant. Time-partitioning has so far received less attention, although in temperate climates, parasites may specialize either in the early or in the late season. Accordingly we investigated whether seasonality can also promote phenotypic divergence. For plant parasites, seasonality generally engenders periodic host absence. To account for abrupt seasonal events, we made use of an epidemic model that combines continuous and discrete dynamics. Based on the assumption there is a trade-off between in-season transmission and inter-season survival, we found out through an 'evolutionary invasion analysis' that evolutionary divergence of the parasite phenotype can occur. Since such a trade-off has been reported, this study provides further ecological bases for the coexistence of closely related plant parasites. Moreover, this study provides original insights into the coexistence of sibling plant pathogens which perform either a single or several infection cycles within a season (mono- and poly-cyclic diseases, or uni- and multi-voltine life cycles)

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Enjeux et défis de la modélisation des paysages agricoles

    No full text
    International audienc
    corecore