9 research outputs found

    Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    Get PDF
    The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel H→ZZ∗→ℓ+ℓ−ℓ'+ℓ'−, where ℓ,ℓ′=e or μ, are presented. These measurements were performed using pp collision data corresponding to integrated luminosities of 4.5 and 20.3  fb−1 at center-of-mass energies of 7 and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. The H→ZZ∗→4ℓ signal is observed with a significance of 8.1 standard deviations, with an expectation of 6.2 standard deviations, at mH=125.36  GeV, the combined ATLAS measurement of the Higgs boson mass from the H→γγ and H→ZZ∗→4ℓ channels. The production rate relative to the Standard Model expectation, the signal strength, is measured in four different production categories in the H→ZZ∗→4ℓ channel. The measured signal strength, at this mass, and with all categories combined, is 1.44+0.40−0.33. The signal strength for Higgs boson production in gluon fusion or in association with tt¯ or bb¯ pairs is found to be 1.7+0.5−0.4, while the signal strength for vector-boson fusion combined with WH/ZH associated production is found to be 0.3+1.6−0.9

    Dijet azimuthal correlations and conditional yields in pp and p plus Pb collisions at √{S}^NN=5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton (pp) and proton-lead (p + Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb^{-1} of pp data and 360 mp^{-1} of p + Pb data, both at {S}^NN=5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the Large Hadron Collider. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between -4.0 and 4.0 using the two highest transverse-momentum jets in each event, with the highest transverse-momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in p + Pb compared to pp collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in p + Pb collisions to those in pp collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets

    Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    Get PDF
    This article reports on a search for dark matter pair production in association with bottom or top quarks in [Formula: see text] of [Formula: see text] collisions collected at [Formula: see text] TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing [Formula: see text]-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter

    Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    Get PDF
    This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb(-1) of pp collisions collected at root s = 8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter

    Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    No full text
    This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb(-1) of pp collisions collected at root s = 8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter

    Measurement of exclusive γγ → W+W− production and search for exclusive Higgs boson production in pp collisions at √s = 8 TeV using the ATLAS detector

    Get PDF
    Searches for exclusively produced W boson pairs in the process pp(γγ)→pW+W-p and an exclusively produced Higgs boson in the process pp(gg)→pHp have been performed using eμ final states. These measurements use 20.2 fb-1 of pp collisions collected by the ATLAS experiment at a center-of-mass energy √s=8 TeV at the LHC. Exclusive production of W+W- consistent with the Standard Model prediction is found with 3.0σ significance. The exclusive W+W- production cross section is determined to be σ(γγ→W+W-→eμX) = 6.9 ± 2.2(stat) ±1.4(sys) fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95% confidence level as -1.7×10-6 < aW0/Λ2 < 1.7×10−6 GeV−2 and −6.4×10−6 < aWC/Λ2 < 6.3× 0−6 GeV−2. A 95% confidence-level upper limit on the total production cross section for an exclusive Higgs boson is set to 1.2 pb

    Measurement of flow harmonics correlations with mean transverse momentum in lead-lead and proton-lead collisions at √<i>s</i><sub>NN</sub>=5.02 TeV with the ATLAS detector

    No full text
    To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of 22 μb122 ~\mu b^{-1} and 28 nb128~nb^{-1}, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the 2nd2^{nd}-, 3rd^{rd}-, and 4th^{th}-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model

    Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector Using pp Collisions at root s=13 TeV

    No full text
    A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139  fb^{-1} of proton-proton collisions at sqrt[s]=13  TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the τ^{+}τ^{-} decay with at least one τ-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the standard model. In the M_{h}^{125} scenario of the minimal supersymmetric standard model, values of tanβ>8 and tanβ>21 are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 and 1.5 TeV, respectively, where tanβ is the ratio of the vacuum expectation values of the two Higgs doublets
    corecore